2025-09-21 12:18:53 -04:00

153 lines
4.7 KiB
Rust

#![no_std]
#![no_main]
/// Represents a reading from the sensor.
pub struct SensorReading<T> {
pub humidity: T,
pub temperature: T,
}
/// Possible errors when interacting with the sensor.
#[derive(Debug)]
pub enum SensorError {
ChecksumMismatch,
Timeout,
PinError,
}
pub struct Dht20<I: I2cEmbedded, D: DelayNs> {
pub i2c: I,
pub delay: D,
}
impl<I: I2cEmbedded, D: DelayNs> Dht20<I, D> {
const SENSOR_ADDRESS: u8 = 0x38;
pub fn new(i2c: I, delay: D) -> Self {
Self { i2c, delay }
}
pub fn read(&mut self) -> Result<SensorReading<f32>, SensorError> {
// Check status
let mut status_response: [u8; 1] = [0; 1];
let _ = self
.i2c
.write_read(Self::SENSOR_ADDRESS, &[0x71], &mut status_response);
// Calibration if needed
if status_response[0] & 0x18 != 0x18 {
let _ = self.i2c.write(Self::SENSOR_ADDRESS, &[0x1B, 0, 0]);
let _ = self.i2c.write(Self::SENSOR_ADDRESS, &[0x1C, 0, 0]);
let _ = self.i2c.write(Self::SENSOR_ADDRESS, &[0x1E, 0, 0]);
}
// Trigger the measurement
self.delay.delay_ms(10);
let _ = self.i2c.write(Self::SENSOR_ADDRESS, &[0xAC, 0x33, 0x00]);
// Read the measurement status
self.delay.delay_ms(80);
loop {
let mut measurement_status_response: [u8; 1] = [0; 1];
let _ = self
.i2c
.read(Self::SENSOR_ADDRESS, &mut measurement_status_response);
let status_word = measurement_status_response[0];
if status_word & 0b1000_0000 == 0 {
break;
}
self.delay.delay_ms(1);
}
// Read the measurement (1 status + 5 data + 1 crc)
let mut measurement_response: [u8; 7] = [0; 7];
let _ = self
.i2c
.read(Self::SENSOR_ADDRESS, &mut measurement_response);
// Humidity 20 bits (8 + 8 + 4)
let mut raw_humidity = measurement_response[1] as u32;
raw_humidity = (raw_humidity << 8) + measurement_response[2] as u32;
raw_humidity = (raw_humidity << 4) + (measurement_response[3] >> 4) as u32;
let humidity_percentage = (raw_humidity as f32 / ((1 << 20) as f32)) * 100.0;
// Temperature 20 bits
let mut raw_temperature = (measurement_response[3] & 0b1111) as u32;
raw_temperature = (raw_temperature << 8) + measurement_response[4] as u32;
raw_temperature = (raw_temperature << 8) + measurement_response[5] as u32;
let temperature_percentage = (raw_temperature as f32 / ((1 << 20) as f32)) * 200.0 - 50.0;
// Compare the calculated CRC with the received CRC
let data = &measurement_response[..6];
let received_crc = measurement_response[6];
let calculated_crc = Self::calculate_crc(data);
if received_crc != calculated_crc {
return Err(SensorError::ChecksumMismatch);
}
Ok(SensorReading {
humidity: humidity_percentage,
temperature: temperature_percentage,
})
}
fn calculate_crc(data: &[u8]) -> u8 {
let polynomial = 0x31u8; // x^8 + x^5 + x^4 + 1
let mut crc = 0xFFu8;
for &byte in data {
crc ^= byte;
// CRC8 - process every bit
for _ in 0..8 {
if crc & 0x80 != 0 {
crc = (crc << 1) ^ polynomial;
} else {
crc <<= 1;
}
}
}
crc
}
}
use embedded_hal::{delay::DelayNs, i2c::I2c as I2cEmbedded};
use esp_backtrace as _;
use esp_hal::{
clock::CpuClock,
delay::Delay,
gpio::{Level, Pull},
i2c::master::I2c,
xtensa_lx_rt::entry,
};
use fugit::{ExtU64, HertzU32};
#[entry]
fn main() -> ! {
let peripherals = esp_hal::init(esp_hal::Config::default());
esp_println::logger::init_logger_from_env();
let mut delay = Delay::new();
// TODO: Remove unwrap
let i2c_for_dht20 =
esp_hal::i2c::master::I2c::new(peripherals.I2C0, esp_hal::i2c::master::Config::default())
.unwrap()
.with_sda(peripherals.pins.gpio21)
.with_scl(peripherals.pins.gpio22);
let mut dht20 = Dht20::new(i2c_for_dht20, delay);
loop {
delay.delay_ms(5000);
match dht20.read() {
Ok(sensor_reading) => log::info!(
"DHT 20 Sensor - Temperature: {} °C, humidity: {} %",
sensor_reading.temperature,
sensor_reading.humidity
),
Err(error) => log::error!("An error occurred while trying to read sensor: {:?}", error),
}
log::info!("-----");
}
}