469 lines
15 KiB
C++
469 lines
15 KiB
C++
/*##############################################################################
|
|
## Author: Shaun Reed ##
|
|
## Legal: All Content (c) 2022 Shaun Reed, all rights reserved ##
|
|
## About: An example of a templated object graph implementation ##
|
|
## Algorithms in this example are found in MIT Intro to Algorithms ##
|
|
## ##
|
|
## Contact: shaunrd0@gmail.com | URL: www.shaunreed.com | GitHub: shaunrd0 ##
|
|
################################################################################
|
|
*/
|
|
#ifndef LIB_GRAPH_HPP
|
|
#define LIB_GRAPH_HPP
|
|
|
|
#include <algorithm>
|
|
#include <iostream>
|
|
#include <map>
|
|
#include <queue>
|
|
#include <unordered_map>
|
|
#include <unordered_set>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
|
|
/******************************************************************************/
|
|
// Node structure for representing a graph
|
|
|
|
template <typename T>
|
|
struct Node {
|
|
public:
|
|
template <typename> friend class Graph;
|
|
template <typename> friend class InfoMST;
|
|
|
|
// Constructors
|
|
Node(const Node &rhs) = default;
|
|
Node & operator=(Node rhs)
|
|
{
|
|
if (this == &rhs) return *this;
|
|
swap(*this, rhs);
|
|
return *this;
|
|
}
|
|
Node(T data, const std::vector<std::pair<T, int>> &adj) : data_(data)
|
|
{
|
|
// Place each adjacent node in vector into our unordered_map of edges
|
|
for (const auto &i : adj) adjacent_.emplace(i.first, i.second);
|
|
}
|
|
|
|
friend void swap(Node &a, Node &b)
|
|
{
|
|
std::swap(a.data_, b.data_);
|
|
std::swap(a.adjacent_, b.adjacent_);
|
|
}
|
|
|
|
// Operators
|
|
// Define operator== for std::find; And comparisons between nodes
|
|
bool operator==(const Node<T> &b) const { return this->data_ == b.data_;}
|
|
// Define an operator!= for comparing nodes for inequality
|
|
bool operator!=(const Node<T> &b) const { return this->data_ != b.data_;}
|
|
|
|
// Accessors
|
|
inline T GetData() const { return data_;}
|
|
inline std::unordered_map<int, int> GetAdjacent() const { return adjacent_;}
|
|
|
|
private:
|
|
T data_;
|
|
// Adjacent stored in an unordered_map<adj.number, edgeWeight>
|
|
std::unordered_map<T, int> adjacent_;
|
|
};
|
|
|
|
|
|
/******************************************************************************/
|
|
// Base struct for storing traversal information on all nodes
|
|
|
|
// Color represents the discovery status of any given node
|
|
enum Color {
|
|
// Node is marked as undiscovered
|
|
White,
|
|
// Node discovery is in progress; Some adjacent nodes have not been checked
|
|
Gray,
|
|
// Node has been discovered; All adjacent nodes have been checked
|
|
Black
|
|
};
|
|
|
|
// Information used in all searches tracked for each node
|
|
struct NodeInfo {
|
|
// Coloring of the nodes is used in both DFS and BFS
|
|
Color discovered = White;
|
|
};
|
|
|
|
|
|
/******************************************************************************/
|
|
// BFS search information struct
|
|
|
|
// Node information that is only used in BFS
|
|
template <typename T>
|
|
struct BFS : NodeInfo {
|
|
// Used to represent distance from start node
|
|
int distance = 0;
|
|
// Used to represent the parent node that discovered this node
|
|
// + If we use this node as the starting point, this will remain a nullptr
|
|
const Node<T> *predecessor = nullptr;
|
|
};
|
|
|
|
// Store search information in unordered_maps so we can pass it around easily
|
|
// + Allows each node to store relative information on the traversal
|
|
template <typename T> using InfoBFS = std::unordered_map<T, struct BFS<T>>;
|
|
|
|
|
|
/******************************************************************************/
|
|
// DFS search information struct
|
|
|
|
// Node information that is only used in DFS
|
|
struct DFS : NodeInfo {
|
|
// Create a pair to track discovery / finish time
|
|
// + Discovery time is the iteration the node is first discovered
|
|
// + Finish time is the iteration the node has been checked completely
|
|
// ++ A finished node has considered all adjacent nodes
|
|
std::pair<int, int> discoveryFinish;
|
|
};
|
|
|
|
template <typename T> using InfoDFS = std::unordered_map<T, struct DFS>;
|
|
|
|
|
|
/******************************************************************************/
|
|
// MST search information struct
|
|
|
|
// Edges stored as multimap<weight, pair<nodeA.data_, nodeB.data_>>
|
|
template <typename T> using Edges = std::multimap<int, std::pair<T, T>>;
|
|
|
|
struct MST : NodeInfo {
|
|
int32_t parent = INT32_MIN;
|
|
int rank = 0;
|
|
};
|
|
|
|
template <typename T>
|
|
struct InfoMST {
|
|
template <typename> friend class Graph;
|
|
|
|
explicit InfoMST(const std::vector<Node<T>> &nodes)
|
|
{
|
|
for (const auto &node : nodes) {
|
|
// Initialize the default values for forest tracked by this struct
|
|
// + This data is used in KruskalMST() to find the MST
|
|
MakeSet(node.data_);
|
|
for (const auto adj : node.adjacent_) {
|
|
// node.number is the number that represents this node
|
|
// adj.first is the node number that is connected to this node
|
|
// adj.second is the weight of the connected edge
|
|
edges_.emplace(adj.second, std::make_pair(node.data_, adj.first));
|
|
// So we initialize the multimap<weight, <nodeA.number, nodeB.number>>
|
|
// + Since a multimap sorts by key, we have sorted our edges by weight
|
|
}
|
|
}
|
|
}
|
|
|
|
void Print()
|
|
{
|
|
std::cout << "MST result: \n";
|
|
for (const auto &edge : edgesMST_) {
|
|
std::cout << "Connected nodes: " << edge.second.first << "->"
|
|
<< edge.second.second << " with weight of " << edge.first << "\n";
|
|
}
|
|
std::cout << "Total MST weight: " << weightMST_ << std::endl;
|
|
}
|
|
|
|
void MakeSet(T x)
|
|
{
|
|
searchInfo[x].parent = x;
|
|
searchInfo[x].rank = 0;
|
|
}
|
|
|
|
void Union(T x, T y)
|
|
{
|
|
Link(FindSet(x), FindSet(y));
|
|
}
|
|
|
|
void Link(T x, T y)
|
|
{
|
|
if (searchInfo[x].rank > searchInfo[y].rank) {
|
|
searchInfo[y].parent = x;
|
|
}
|
|
else {
|
|
searchInfo[x].parent = y;
|
|
if (searchInfo[x].rank == searchInfo[y].rank) {
|
|
searchInfo[y].rank += 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
T FindSet(T x)
|
|
{
|
|
if (x != searchInfo[x].parent) {
|
|
searchInfo[x].parent = FindSet(searchInfo[x].parent);
|
|
}
|
|
return searchInfo[x].parent;
|
|
}
|
|
|
|
private:
|
|
std::unordered_map<T, struct MST> searchInfo;
|
|
// All of the edges within our graph
|
|
// + Since each node stores its own edges, this is initialized in InfoMST ctor
|
|
Edges<T> edges_;
|
|
|
|
// A multimap of the edges found for our MST
|
|
Edges<T> edgesMST_;
|
|
// The total weight of our resulting MST
|
|
int weightMST_ = 0;
|
|
};
|
|
|
|
|
|
/******************************************************************************/
|
|
// Templated graph class
|
|
|
|
template <class T>
|
|
class Graph {
|
|
public:
|
|
// Constructor
|
|
explicit Graph(std::vector<Node<T>> nodes) : nodes_(std::move(nodes)) {}
|
|
|
|
// Breadth First Search
|
|
InfoBFS<T> BFS(const Node<T>& startNode) const;
|
|
|
|
std::deque<Node<T>> PathBFS(const Node<T> &start, const Node<T> &finish) const;
|
|
|
|
// Depth First Search
|
|
InfoDFS<T> DFS() const;
|
|
// An alternate DFS that checks each node of the graph beginning at startNode
|
|
InfoDFS<T> DFS(const Node<T> &startNode) const;
|
|
// Visit function is used in both versions of DFS
|
|
void DFSVisit(int &time, const Node<T>& startNode, InfoDFS<T> &searchInfo) const;
|
|
// Topological sort, using DFS
|
|
std::vector<Node<T>> TopologicalSort(const Node<T> &startNode) const;
|
|
// Kruskal's MST
|
|
InfoMST<T> KruskalMST() const;
|
|
|
|
// Returns a copy of a node with the number i within the graph
|
|
// + This uses the private, non-const accessor GetNode() and returns a copy
|
|
inline Node<T> GetNodeCopy(T i) { return GetNode(i);}
|
|
// Return a constant iterator for reading node values
|
|
inline typename std::vector<Node<T>>::const_iterator NodeBegin()
|
|
{ return nodes_.cbegin();}
|
|
|
|
private:
|
|
// A non-const accessor for direct access to a node with the number value i
|
|
inline Node<T> & GetNode(T i)
|
|
{ return *std::find(nodes_.begin(), nodes_.end(), Node<T>(i, {}));}
|
|
// For grabbing a const qualified node
|
|
inline const Node<T> & GetNode(T i) const
|
|
{ return *std::find(nodes_.begin(), nodes_.end(), Node<T>(i, {}));}
|
|
|
|
std::vector<Node<T>> nodes_;
|
|
};
|
|
|
|
|
|
/******************************************************************************/
|
|
// Graph class member function definitions
|
|
|
|
template <typename T>
|
|
InfoBFS<T> Graph<T>::BFS(const Node<T> &startNode) const
|
|
{
|
|
// Create local object to track the information gathered during traversal
|
|
InfoBFS<T> searchInfo;
|
|
|
|
// Create a queue to visit discovered nodes in FIFO order
|
|
std::queue<const Node<T> *> visitQueue;
|
|
|
|
// Mark the startNode as in progress until we finish checking adjacent nodes
|
|
searchInfo[startNode.data_].discovered = Gray;
|
|
|
|
// Visit the startNode
|
|
visitQueue.push(&startNode);
|
|
|
|
// Continue to visit nodes until there are none left in the graph
|
|
while (!visitQueue.empty()) {
|
|
// Remove thisNode from the visitQueue, storing its vertex locally
|
|
const Node<T> * thisNode = visitQueue.front();
|
|
visitQueue.pop();
|
|
std::cout << "Visiting node " << thisNode->data_ << std::endl;
|
|
|
|
// Check if we have already discovered all the adjacentNodes to thisNode
|
|
for (const auto &adjacent : thisNode->adjacent_) {
|
|
if (searchInfo[adjacent.first].discovered == White) {
|
|
std::cout << "Found undiscovered adjacentNode: " << adjacent.first
|
|
<< "\n";
|
|
// Mark the adjacent node as in progress
|
|
searchInfo[adjacent.first].discovered = Gray;
|
|
searchInfo[adjacent.first].distance =
|
|
searchInfo[thisNode->data_].distance + 1;
|
|
searchInfo[adjacent.first].predecessor =
|
|
&GetNode(thisNode->data_);
|
|
|
|
// Add the discovered node the the visitQueue
|
|
visitQueue.push(&GetNode(adjacent.first));
|
|
}
|
|
}
|
|
// We are finished with this node and the adjacent nodes; Mark it discovered
|
|
searchInfo[thisNode->data_].discovered = Black;
|
|
}
|
|
|
|
// Return the information gathered from this search, JIC caller needs it
|
|
return searchInfo;
|
|
}
|
|
|
|
template <typename T>
|
|
std::deque<Node<T>> Graph<T>::PathBFS(const Node<T> &start,
|
|
const Node<T> &finish) const
|
|
{
|
|
// Store the path as copies of each node
|
|
// + If the caller modifies these, it will not impact the graph's data
|
|
std::deque<Node<T>> path;
|
|
|
|
InfoBFS<T> searchInfo = BFS(start);
|
|
const Node<T> * next = searchInfo[finish.data_].predecessor;
|
|
bool isValid = false;
|
|
do {
|
|
// If we have reached the start node, we have found a valid path
|
|
if (*next == Node<T>(start)) isValid = true;
|
|
|
|
// Add the node to the path as we check each node
|
|
// + Use emplace_front to call the Node copy constructor
|
|
path.emplace_front(*next);
|
|
|
|
// Move to the next node
|
|
next = searchInfo[next->data_].predecessor;
|
|
} while (next != nullptr);
|
|
// Use emplace_back to call Node copy constructor
|
|
path.emplace_back(finish);
|
|
|
|
// If we never found a valid path, erase all contents of the path
|
|
if (!isValid) path.erase(path.begin(), path.end());
|
|
|
|
// Return the path, the caller should handle empty paths accordingly
|
|
return path;
|
|
}
|
|
|
|
template <typename T>
|
|
InfoDFS<T> Graph<T>::DFS() const
|
|
{
|
|
// Track the nodes we have discovered
|
|
InfoDFS<T> searchInfo;
|
|
int time = 0;
|
|
|
|
// Visit each node in the graph
|
|
for (const auto& node : nodes_) {
|
|
std::cout << "Visiting node " << node.data_ << std::endl;
|
|
// If the node is undiscovered, visit it
|
|
if (searchInfo[node.data_].discovered == White) {
|
|
std::cout << "Found undiscovered node: " << node.data_ << std::endl;
|
|
// Visiting the undiscovered node will check it's adjacent nodes
|
|
DFSVisit(time, node, searchInfo);
|
|
}
|
|
}
|
|
|
|
return searchInfo;
|
|
}
|
|
|
|
template <typename T>
|
|
InfoDFS<T> Graph<T>::DFS(const Node<T> &startNode) const
|
|
{
|
|
// Track the nodes we have discovered
|
|
InfoDFS<T> searchInfo;
|
|
int time = 0;
|
|
|
|
auto startIter = std::find(nodes_.begin(), nodes_.end(),
|
|
Node<T>(startNode.data_, {})
|
|
);
|
|
|
|
// beginning at startNode, visit each node in the graph until we reach the end
|
|
while (startIter != nodes_.end()) {
|
|
std::cout << "Visiting node " << startIter->data_ << std::endl;
|
|
// If the startIter is undiscovered, visit it
|
|
if (searchInfo[startIter->data_].discovered == White) {
|
|
std::cout << "Found undiscovered node: " << startIter->data_ << std::endl;
|
|
// Visiting the undiscovered node will check it's adjacent nodes
|
|
DFSVisit(time, *startIter, searchInfo);
|
|
}
|
|
startIter++;
|
|
}
|
|
|
|
// Once we reach the last node, check the beginning for unchecked nodes
|
|
startIter = nodes_.begin();
|
|
|
|
// Once we reach the initial startNode, we have checked all nodes
|
|
while (*startIter != startNode) {
|
|
std::cout << "Visiting node " << startIter->data_ << std::endl;
|
|
// If the startIter is undiscovered, visit it
|
|
if (searchInfo[startIter->data_].discovered == White) {
|
|
std::cout << "Found undiscovered node: " << startIter->data_ << std::endl;
|
|
// Visiting the undiscovered node will check it's adjacent nodes
|
|
DFSVisit(time, *startIter, searchInfo);
|
|
}
|
|
startIter++;
|
|
}
|
|
|
|
return searchInfo;
|
|
}
|
|
|
|
template <typename T>
|
|
void Graph<T>::DFSVisit(int &time, const Node<T>& startNode,
|
|
InfoDFS<T> &searchInfo) const
|
|
{
|
|
searchInfo[startNode.data_].discovered = Gray;
|
|
time++;
|
|
searchInfo[startNode.data_].discoveryFinish.first = time;
|
|
|
|
// Check the adjacent nodes of the startNode
|
|
for (const auto &adjacent : startNode.adjacent_) {
|
|
auto iter = std::find(nodes_.begin(), nodes_.end(),
|
|
Node<T>(adjacent.first, {}));
|
|
// If the adjacentNode is undiscovered, visit it
|
|
// + Offset by 1 to account for 0 index of discovered vector
|
|
if (searchInfo[iter->data_].discovered == White) {
|
|
std::cout << "Found undiscovered adjacentNode: "
|
|
<< GetNode(adjacent.first).data_ << std::endl;
|
|
// Visiting the undiscovered node will check it's adjacent nodes
|
|
DFSVisit(time, *iter, searchInfo);
|
|
}
|
|
}
|
|
searchInfo[startNode.data_].discovered = Black;
|
|
time++;
|
|
searchInfo[startNode.data_].discoveryFinish.second = time;
|
|
}
|
|
|
|
template <typename T>
|
|
std::vector<Node<T>> Graph<T>::TopologicalSort(const Node<T> &startNode) const
|
|
{
|
|
InfoDFS<T> topological = DFS(GetNode(startNode.data_));
|
|
|
|
std::vector<Node<T>> order(nodes_);
|
|
|
|
auto comp = [&topological](const Node<T> &a, const Node<T> &b) {
|
|
return (topological[a.data_].discoveryFinish.second <
|
|
topological[b.data_].discoveryFinish.second);
|
|
};
|
|
|
|
std::sort(order.begin(), order.end(), comp);
|
|
|
|
// The topologicalOrder is read right-to-left in the final result
|
|
// + Output is handled in main as FILO, similar to a stack
|
|
return order;
|
|
}
|
|
|
|
template <typename T>
|
|
InfoMST<T> Graph<T>::KruskalMST() const
|
|
{
|
|
InfoMST<T> searchInfo(nodes_);
|
|
// The ctor for InfoMST initializes all edges within the graph into a multimap
|
|
// + Key for multimap is edge weight, so they're already sorted in ascending
|
|
|
|
// For each edge in the graph, check if they are part of the same tree
|
|
// + Since we do not want to create a cycle in the MST forest -
|
|
// + we don't connect nodes that are part of the same tree
|
|
for (const auto &edge : searchInfo.edges_) {
|
|
// Two integers representing the node.number for the connected nodes
|
|
const int u = edge.second.first;
|
|
const int v = edge.second.second;
|
|
// Check if the nodes are of the same tree
|
|
if (searchInfo.FindSet(u) != searchInfo.FindSet(v)) {
|
|
// If they are not, add the edge to our MST
|
|
searchInfo.edgesMST_.emplace(edge);
|
|
searchInfo.weightMST_ += edge.first;
|
|
// Update the forest to reflect this change
|
|
searchInfo.Union(u, v);
|
|
}
|
|
}
|
|
|
|
return searchInfo;
|
|
}
|
|
|
|
#endif // LIB_GRAPH_HPP
|