145 lines
5.0 KiB
C++
145 lines
5.0 KiB
C++
/*##############################################################################
|
|
## Author: Shaun Reed ##
|
|
## Legal: All Content (c) 2022 Shaun Reed, all rights reserved ##
|
|
## About: Driver program to test a simple graph implementation ##
|
|
## ##
|
|
## Contact: shaunrd0@gmail.com | URL: www.shaunreed.com | GitHub: shaunrd0 ##
|
|
################################################################################
|
|
*/
|
|
|
|
#include "lib-graph.hpp"
|
|
|
|
|
|
int main (const int argc, const char * argv[])
|
|
{
|
|
// We could initialize the graph with some localNodes...
|
|
// This graph uses an unordered_(map/set), so initialization is reversed
|
|
// + So the final order of initialization is 1,2,3,4,5,6,7,8
|
|
// + Similarly, adjacent nodes are inserted at front (6,4 initializes to 4,6)
|
|
std::unordered_map<int, std::unordered_set<int>> localNodes{
|
|
{8, {6, 4}},
|
|
{7, {8, 6, 4, 3}},
|
|
{6, {7, 3, 2}},
|
|
{5, {1}},
|
|
{4, {8, 7, 3}},
|
|
{3, {7, 6, 4}},
|
|
{2, {6, 1}}, // Node 2...
|
|
{1, {5, 2}}, // Node 1
|
|
};
|
|
Graph exampleGraph(localNodes);
|
|
|
|
|
|
std::cout << "\n\n##### Breadth First Search #####\n";
|
|
// Or we could use an initializer list...
|
|
// Initialize a example graph for Breadth First Search
|
|
Graph bfsGraph (
|
|
{
|
|
{8, {6, 4}},
|
|
{7, {8, 6, 4, 3}},
|
|
{6, {7, 3, 2}},
|
|
{5, {1}},
|
|
{4, {8, 7, 3}},
|
|
{3, {7, 6, 4}},
|
|
{2, {6, 1}}, // Node 2...
|
|
{1, {5, 2}}, // Node 1
|
|
}
|
|
);
|
|
// The graph traversed in this example is seen in MIT Intro to Algorithms
|
|
// + Chapter 22, Figure 22.3 on BFS
|
|
bfsGraph.BFS(2);
|
|
|
|
std::cout << "\nTesting finding a path between two nodes using BFS...\n";
|
|
auto path = bfsGraph.PathBFS(1, 7);
|
|
if (path.empty()) std::cout << "No valid path found!\n";
|
|
else {
|
|
std::cout << "\nValid path from " << path.front() << " to "
|
|
<< path.back() << ": ";
|
|
for (const auto &node : path) {
|
|
std::cout << node << " ";
|
|
}
|
|
std::cout << std::endl;
|
|
}
|
|
|
|
std::cout << "\n\n##### Depth First Search #####\n";
|
|
// Initialize an example graph for Depth First Search
|
|
Graph dfsGraph (
|
|
{
|
|
{6, {6}},
|
|
{5, {4}},
|
|
{4, {2}},
|
|
{3, {6, 5}},
|
|
{2, {5}},
|
|
{1, {4, 2}},
|
|
}
|
|
);
|
|
// The graph traversed in this example is seen in MIT Intro to Algorithms
|
|
// + Chapter 22, Figure 22.4 on DFS
|
|
dfsGraph.DFS();
|
|
|
|
|
|
std::cout << "\n\n##### Topological Sort #####\n";
|
|
// The graph traversed in this example is seen in MIT Intro to Algorithms
|
|
// + Chapter 22, Figure 22.4 on DFS
|
|
// Initialize an example graph for Topological Sort
|
|
// + The final result will place node 3 (watch) at the beginning of the order
|
|
// + This is because node 3 has no connecting node
|
|
Graph topologicalGraph (
|
|
{
|
|
{9, {}}, // jacket
|
|
{8, {9}}, // tie
|
|
{7, {9}}, // belt
|
|
{6, {7, 8}}, // shirt
|
|
{5, {}}, // shoes
|
|
{4, {7, 5}}, // pants
|
|
{3, {}}, // watch
|
|
{2, {5}}, // socks
|
|
{1, {5, 4}}, // undershorts
|
|
}
|
|
);
|
|
auto order = topologicalGraph.TopologicalSort(topologicalGraph.GetNode(6));
|
|
std::cout << "\nTopological order: ";
|
|
while (!order.empty()) {
|
|
std::cout << order.back() << " ";
|
|
order.pop_back();
|
|
}
|
|
std::cout << std::endl << std::endl;
|
|
|
|
// If we want the topological order to exactly match what is seen in the book
|
|
// + We have to initialize the graph carefully to get this result -
|
|
// This graph uses an unordered_(map/set), so initialization is reversed
|
|
// + So the order of nodes on the container below is 6,7,8,9,3,1,4,5,2
|
|
// + The same concept applies to their adjacent nodes (7,8 initializes to 8,7)
|
|
// + In object-graph implementation, I use vectors this does not apply there
|
|
Graph topologicalGraph2 (
|
|
{
|
|
{2, {5}}, // socks
|
|
{5, {}}, // shoes
|
|
{4, {7, 5}}, // pants
|
|
{1, {5, 4}}, // undershorts
|
|
{3, {}}, // watch
|
|
{9, {}}, // jacket
|
|
{7, {9}}, // belt
|
|
{8, {9}}, // tie
|
|
{6, {7, 8}}, // shirt
|
|
}
|
|
);
|
|
|
|
// The graph traversed in this example is seen in MIT Intro to Algorithms
|
|
// + Chapter 22, Figure 22.7 on Topological Sort
|
|
// + Each node was replaced with a value from left-to-right, top-to-bottom
|
|
// + Undershorts = 1, Socks = 2, Watch = 3, Pants = 4, etc...
|
|
std::vector<int> order2 =
|
|
topologicalGraph2.TopologicalSort(topologicalGraph2.NodeBegin());
|
|
// Because this is a simple graph with no objects to store finishing time
|
|
// + The result is only one example of valid topological order
|
|
// + There are other valid orders; Final result differs from one in the book
|
|
std::cout << "\nTopological order: ";
|
|
while (!order2.empty()) {
|
|
std::cout << order2.back() << " ";
|
|
order2.pop_back();
|
|
}
|
|
std::cout << std::endl;
|
|
|
|
return 0;
|
|
}
|