klips/cpp/algorithms/graphs/object/lib-graph.cpp

187 lines
6.6 KiB
C++

/*##############################################################################
## Author: Shaun Reed ##
## Legal: All Content (c) 2022 Shaun Reed, all rights reserved ##
## About: An example of an object graph implementation ##
## Algorithms in this example are found in MIT Intro to Algorithms ##
## ##
## Contact: shaunrd0@gmail.com | URL: www.shaunreed.com | GitHub: shaunrd0 ##
################################################################################
*/
#include "lib-graph.hpp"
InfoBFS Graph::BFS(const Node& startNode) const
{
// Create local object to track the information gathered during traversal
InfoBFS searchInfo;
// Create a queue to visit discovered nodes in FIFO order
std::queue<const Node *> visitQueue;
// Mark the startNode as in progress until we finish checking adjacent nodes
searchInfo[startNode.number].discovered = Gray;
// Visit the startNode
visitQueue.push(&startNode);
// Continue to visit nodes until there are none left in the graph
while (!visitQueue.empty()) {
// Remove thisNode from the visitQueue, storing its vertex locally
const Node * thisNode = visitQueue.front();
visitQueue.pop();
std::cout << "Visiting node " << thisNode->number << std::endl;
// Check if we have already discovered all the adjacentNodes to thisNode
for (const auto &adjacent : thisNode->adjacent) {
if (searchInfo[adjacent].discovered == White) {
std::cout << "Found undiscovered adjacentNode: " << adjacent << "\n";
// Mark the adjacent node as in progress
searchInfo[adjacent].discovered = Gray;
searchInfo[adjacent].distance = searchInfo[thisNode->number].distance + 1;
searchInfo[adjacent].predecessor = &GetNode(thisNode->number);
// Add the discovered node the the visitQueue
visitQueue.push(&GetNode(adjacent));
}
}
// We are finished with this node and the adjacent nodes; Mark it discovered
searchInfo[thisNode->number].discovered = Black;
}
// Return the information gathered from this search, JIC caller needs it
return searchInfo;
}
std::deque<Node> Graph::PathBFS(const Node &start, const Node &finish) const
{
// Store the path as copies of each node
// + If the caller modifies these, it will not impact the graph's data
std::deque<Node> path;
InfoBFS searchInfo = BFS(start);
const Node * next = searchInfo[finish.number].predecessor;
bool isValid = false;
do {
// If we have reached the start node, we have found a valid path
if (*next == Node(start)) isValid = true;
// Add the node to the path as we check each node
// + Use emplace_front to call the Node copy constructor
path.emplace_front(*next);
// Move to the next node
next = searchInfo[next->number].predecessor;
} while (next != nullptr);
// Use emplace_back to call Node copy constructor
path.emplace_back(finish);
// If we never found a valid path, erase all contents of the path
if (!isValid) path.erase(path.begin(), path.end());
// Return the path, the caller should handle empty paths accordingly
return path;
}
InfoDFS Graph::DFS() const
{
// Track the nodes we have discovered
InfoDFS searchInfo;
int time = 0;
// Visit each node in the graph
for (const auto& node : nodes_) {
std::cout << "Visiting node " << node.number << std::endl;
// If the node is undiscovered, visit it
if (searchInfo[node.number].discovered == White) {
std::cout << "Found undiscovered node: " << node.number << std::endl;
// Visiting the undiscovered node will check it's adjacent nodes
DFSVisit(time, node, searchInfo);
}
}
return searchInfo;
}
InfoDFS Graph::DFS(const Node &startNode) const
{
// Track the nodes we have discovered
InfoDFS searchInfo;
int time = 0;
auto startIter = std::find(nodes_.begin(), nodes_.end(),
Node(startNode.number, {})
);
// beginning at startNode, visit each node in the graph until we reach the end
while (startIter != nodes_.end()) {
std::cout << "Visiting node " << startIter->number << std::endl;
// If the startIter is undiscovered, visit it
if (searchInfo[startIter->number].discovered == White) {
std::cout << "Found undiscovered node: " << startIter->number << std::endl;
// Visiting the undiscovered node will check it's adjacent nodes
DFSVisit(time, *startIter, searchInfo);
}
startIter++;
}
// Once we reach the last node, check the beginning for unchecked nodes
startIter = nodes_.begin();
// Once we reach the initial startNode, we have checked all nodes
while (*startIter != startNode) {
std::cout << "Visiting node " << startIter->number << std::endl;
// If the startIter is undiscovered, visit it
if (searchInfo[startIter->number].discovered == White) {
std::cout << "Found undiscovered node: " << startIter->number << std::endl;
// Visiting the undiscovered node will check it's adjacent nodes
DFSVisit(time, *startIter, searchInfo);
}
startIter++;
}
return searchInfo;
}
void Graph::DFSVisit(int &time, const Node& startNode, InfoDFS &searchInfo) const
{
searchInfo[startNode.number].discovered = Gray;
time++;
searchInfo[startNode.number].discoveryFinish.first = time;
// Check the adjacent nodes of the startNode
for (const auto &adjacent : startNode.adjacent) {
auto iter = std::find(nodes_.begin(), nodes_.end(),
Node(adjacent, {}));
// If the adjacentNode is undiscovered, visit it
// + Offset by 1 to account for 0 index of discovered vector
if (searchInfo[iter->number].discovered == White) {
std::cout << "Found undiscovered adjacentNode: "
<< GetNode(adjacent).number << std::endl;
// Visiting the undiscovered node will check it's adjacent nodes
DFSVisit(time, *iter, searchInfo);
}
}
searchInfo[startNode.number].discovered = Black;
time++;
searchInfo[startNode.number].discoveryFinish.second = time;
}
std::vector<Node> Graph::TopologicalSort(const Node &startNode) const
{
InfoDFS topological = DFS(GetNode(startNode.number));
std::vector<Node> order(nodes_);
auto comp = [&topological](const Node &a, const Node &b) {
return (topological[a.number].discoveryFinish.second <
topological[b.number].discoveryFinish.second);
};
std::sort(order.begin(), order.end(), comp);
// The topologicalOrder is read right-to-left in the final result
// + Output is handled in main as FILO, similar to a stack
return order;
}