/*############################################################################# ## Author: Shaun Reed ## ## Legal: All Content (c) 2020 Shaun Reed, all rights reserved ## ## About: An example of a max heap implementation ## ## ## ## Contact: shaunrd0@gmail.com | URL: www.shaunreed.com | GitHub: shaunrd0 ## ############################################################################## ## maxheap.cpp */ #include "maxheap.h" /******************************************************************************** * Constructors, Destructors, Operators *********************************************************************************/ /** default constructor * Constructs a heap with the given default values */ MaxHeap::MaxHeap() : size(0), index(0), heap(NULL) {} /** copy constructor * Creates a new heap which is identical to an existing MaxHeap object * * @param rhs */ MaxHeap::MaxHeap(const MaxHeap& rhs) : size(rhs.size), index(rhs.index) { heap = new int[size]; for (int i = 0; i < index; i++) { heap[i] = rhs.heap[i]; } } /** constructor * Constructs a new heap with a predefined size * Does not input any values * * @param _size The maximum number of indices within the heap */ MaxHeap::MaxHeap(int _size) : size(_size), index(0) { grow(heap, size); heap[index++] = INT32_MIN; } /** destructor * Empties the heap, freeing used memory */ MaxHeap::~MaxHeap() { makeEmpty(); } /** operator= * Sets one existing MaxHeap equal to another existing MaxHeap * * @param rhs An existing MaxHeap * @return The copied MaxHeap object */ MaxHeap MaxHeap::operator=(MaxHeap rhs) { if (this == &rhs) return *this; std::swap(heap, rhs.heap); size = rhs.size; index = rhs.index; return *this; } /******************************************************************************** * Public Member Functions *********************************************************************************/ /** insert * Calls private member to insert variable into our heap * * @param val The value to be inserted into the heap */ void MaxHeap::insert(int val) { insert(heap, size, val); } /** del * Removes the ROOT value from the heap */ void MaxHeap::del() { del(heap); } /** print * Outputs all values held within the heap */ void MaxHeap::print() { print(heap, index); } /** makeEmpty * Deletes the heap object if it exists */ void MaxHeap::makeEmpty() { if (!isEmpty()) { delete[] heap; heap = NULL; size = index = 0; } } /** findMin * Finds and returns the minimum value stored within our heap * * @return The smallest value stored in our heap */ int MaxHeap::findMin() { int min = INT32_MAX; for (int i = ROOT; i < index; i++) if (min > heap[i]) min = heap[i]; return min; } /** findMax * Finds and returns the max value stored within our heap * * @return The largest value stored in our heap */ int MaxHeap::findMax() { return heap[ROOT]; } /** isEmpty * Checks if our heap is empty or not * * @return true if the heap is empty, false if it has contents */ bool MaxHeap::isEmpty() { return heap == NULL; } /** isFull * Checks if our heap is full or not * * @return true if the heap is full, false if it is not */ bool MaxHeap::isFull() { // Offset for the 0 index return index >= size-1; } /******************************************************************************** * Private Member Functions *********************************************************************************/ /** insert * @brief Inserts a given value into a heap array at the last free position * * @param heap Address of the heap array to modify * @param _size Last free position within the heap array * @param val Value to insert into the heap */ void MaxHeap::insert(int*& heap, int _size, int val) { if (isFull()) grow(heap, _size * 2); heap[index] = val; //Check the root node < all parent nodes siftUp(heap, index++); // Increment index } /** del * @brief Delete at the root index of the heap (1) * * @param heap Address of the heap to modify */ void MaxHeap::del(int* heap) { std::swap(heap[ROOT], heap[index-1]); heap[index-1] = int(); //Check the root node > all child nodes siftDown(heap, ROOT); } /** print * @brief Print the contents of the heap array * Start from the 0 index, regardless of the ROOT * * @param heap Address of the heap array * @param _index Last free position in the array */ void MaxHeap::print(int* heap, int _index) { if (isEmpty()) return; for (int i = 0; i < _index; i++) std::cout << "[" << heap[i] << "] | "; std::cout << std::endl; } /** grow * @brief Expands the maximum length of the heap * * @param heap Modifiable reference to the dynamic heap array to expand * @param _size The new maximum size for the given heap */ void MaxHeap::grow(int*& heap, int _size) { if (isEmpty()) { // Offset size for the 0 index size = 2; heap = new int[size]; // Store smallest int possible at 0 index to show its value isn't to be used heap[index++] = INT32_MIN; return; } int *newHeap = new int[_size]; if (!isEmpty()) for (int i = 0; i < _size; i++) // Deep copy of previous heap newHeap[i] = heap[i]; // Delete the previous heap before we reassign delete[] heap; size = _size; heap = newHeap; } /** siftUp * @brief Sorts the last item inserted into the heap against items above it * Swap nodes until given item is < parent node * * @param heap Address of heap array to sort through * @param _index Last used position within the heap array */ void MaxHeap::siftUp(int* heap, int _index) { // Swap until parent value > new value for(; heap[_index] > heap[_index / 2]; _index/=2) { if (heap[_index / 2] == INT32_MIN) return; std::swap(heap[_index], heap[_index / 2]); } } /** siftDown * @brief Sorts the item at the given currentMax against lower items in the heap * Swap nodes until the given item is > all child nodes * * @param heap Address of heap array to sort through * @param currentMax Last known largest position within the heap */ void MaxHeap::siftDown(int* heap, int currentMax) { int left = currentMax * 2; // Left subtree of the heap int right = currentMax * 2 + 1; // Right subtree of the heap // Set the last known largest position in the heap int largest = currentMax; // Check if the left tree value is > the last known largest if (left < index && heap[left] > heap[largest]) largest = left; // Check if the right tree value is > the last known largest if (right < index && heap[right] > heap[largest]) largest = right; // If there was any change in the last known largest node, siftDown again if (currentMax != largest) { std::swap(heap[currentMax], heap[largest]); siftDown(heap, largest); } }