LAFVIN

ESP32 Basic Starter Kit

Content
PACKING LISt ...ttt bbb bbbt s st b s s s e b s e s sansesanaens 1
ESP32 INrOAUCTION ...ttt s 2
ESP32 SPECIHICATIONS ...ttt ettt st st s s s e st s e s sesas 2
ESP32 DeVvelopmMeENnt BOAIAS ... sess s s s s sanes 4
ESP32 ArdUINO IDE ...ttt s ssse s s 20
Prerequisites: Arduino IDE INStalled.............o.vveeeeceeeeetet e 20
Installing ESP32 Add-on in ArdUinO IDE ...t 21
UPIOAA TESE COUE ...ttt sttt bbb nee 25
TrOUDIESNOOUING ...ttt bbbt sanaas 31
Project 1 ESP32 INPULS OULPULSooivc sttt 33
PrEIEQUISITES ...ttt s b s b a st s s ssanes 33
ESP32 Control Digital OUEIPULS ..ottt seee 33
ESP32 Read Digital INPULS ..ottt 34
PartS REQUITEA ...ttt bbb bbb senas 35
SChemMaAtiC DIGQIram ...ttt sas 35
COUB . et 37
DEMONSIIALION ...ttt bbb e 41
Project 2 ESP32 ANAIOG INPULS ...ttt ae s s s sassanen 43
ANAIOG INPULS (ADC) ..ottt sttt a s s s sanes 43
PartS REQUITEA.........ooee ettt bbb s b s senas 46
SCNEMALIC ...t e 46
COUR . 47
TeStiNG the EXAMPIE ...ttt 48
Project 3 ESP32 PWM(ANAIOG OUIPUL) ...ttt assse st ssssnssssssnsns 51
ESP32 LED PWM CONEIOHET ...ttt sssesssesssssssessse s sssesssesssessnens 51
PartS REQUITEA.........ooe ettt bbb bbb s s b s senens 52

SONEBIMALIC ... et ettt et et e ee et e e et e e e e eeee e e e e aeeeee e e e e aeeeeeseeasaseesesasaeaseesseaeaseesasaeaen 53

COUB .o e 53
TeStNG the EXAMPIE ...ttt aee 58
Project 4 ESP32 PIR MOtION SENSOK ...ttt sassans 59
How HC-SRS501 Motion SENSOr WOTKS ..ottt sssesse s sssessesasesnees 59
INIFOAUCING TIMIEIS ...ttt bbb bbb s s et esassenanans 60
PartS REQUITEA.........ooeeeeeeeeeeee ettt s s as s s sesasassassesasaesans 61
COUB .t e 63
DEMONSITALION ...ttt bbb 63
Project 5 ESP32 SWItCh WED SEIVET ...ttt saesaeen 65
PrOJECT OVEIVIEW ...ttt bbb bbbttt 65
PartS REQUITEA..........oe ettt bbb b s b senans 65
SCNEMELIC ...t 66
COUB . e 67
DEMONSITALION ...ttt e 71
WIEAPPING UP ..ottt sttt bbbt s st s st s s s e s s e s sassenans 82
Project 6 RGB LED WED SEIVET ...ttt sae 83
PrOJECT OVEIVIEW ...ttt bbbt a e 83
HOW dO RGB LEDS WOTK? ...ttt sees 84
PartS REQUITEA..........ooeeeeeeeeeeee ettt as s as s sassssassssassesasaenans 85
SCNEMELICeeei ettt st 86
GO ...ttt e 86
DEMONSIIALION ...ttt e 91
Project 7 ESP32 Relay WED SEIVET ...t saen 94
INIFOAUCING REIQYS ...ttt bbb bbb sesanans 94
SCNEMELIC ...ttt s et 98
Installing the Library for ESP32....... sttt ssssassssns 100
COUB . e 101

Project_8 Output_State Synchronization_Web_Server ... 104
PrOJECT OVEIVIEW ...ttt sttt seseas 104
PartS REQUITEA.........o.oe sttt bbb b b b s ans 105
SCNEMALIC ...ttt 106
Installing the Library for ESP32.......... ettt 107
COUB .t e 108
DEMONSIIALION ...ttt 114

Project 9 ESP32 DHT 11 WED SEIVE ...ttt ssssessssssssss st sssssssssssnns 117
PrEIrEQUISITES ...ttt bbb a s s e s s aen 117
PartS REQUITEA...........ooe sttt b b b s aes 118
SCNEMALIC ...ttt 118
INSTAIlING LIDIAFI@S ...ttt seen 119
COUR .t e 121
DEMONSIIALION ...ttt s 126

Project_10_ESP32_OLED_DISPIAYcccccouvumereeeiineeiseiireeeisseessesissesssessssesssssssssssssssssssssssessssessssssens 127
Introducing 0.96 iNCh OLED DiSPIAY ..ottt asaesansas 127
SCNEMALIC ...ttt 128
Installing SSD1306 OLED Library — ESP32..........cieneessissssssessssssssssssssesssssssens 129

LAFVII

Packing List

Photosensitive
Resistor Module x1

=

Micro-USB Cable x1

~

Button Switch x6

~
J

F-M DuPont Cable x10

LED-Red x5

0.96 inch OLED x1

830 Tie-Points Breadboard x1

DHT11 Temperature and
Humidity Module x1

HC-SR501PIR
Motion Sensor x1

Sk

Resistor-220R/1k/10k x30

~

\
7

Active Buzzer x1

LED-RGB x2

F-F DuPont Cable x10

M-M DuPont Cable x10

1/137

LAF'

ESP32 Introduction

New to ESP327? Start here! The ESP32 is a series of low-cost and low-power
System on a Chip (SoC) microcontrollers developed by Espressif that include
Wi-Fi and Bluetooth wireless capabilities and dual-core processor. If you're

familiar with the ESP8266, the ESP32 is its successor, loaded with lots of new
features.

L]
-
L
L]
L]
L]
L]
L]
L]
L
.
L]
L]
L]

(AR N NN NN]
L OOl
TIXIEXIEEETENIRR SR LN NN N O J

ESP32 Specifications

If you want to get a bit more technical and specific, you can take a look at the
following detailed specifications of the ESP32 (source: http://esp32.net/)—for

more details, check the datasheet):

« Wireless connectivity WiFi: 150.0 Mbps data rate with HT40
» Bluetooth: BLE (Bluetooth Low Energy) and Bluetooth Classic

» Processor: Tensilica Xtensa Dual-Core 32-bit LX6 microprocessor, running at
160 or 240 MHz

= Memory:

2/137

https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf

LAFVIN

ROM: 448 KB (for booting and core functions)
SRAM: 520 KB (for data and instructions)
RTC fas SRAM: 8 KB (for data storage and main CPU during RTC
Boot from the deep-sleep mode)
RTC slow SRAM: 8KB (for co-processor accessing during
deep-sleep mode)
eFuse: 1 Kbit (of which 256 bits are used for the system (MAC
address and chip configuration) and the remaining 768 bits are reserved
for customer applications, including Flash-Encryption and Chip-ID)
m Embedded flash: flash connected internally via 1016, 1017, SD_CMD,
SD_CLK, SD_DATA 0 and SD_DATA 1 on ESP32-D2WD and
ESP32-PICO-DA4.

. 0 MiB (ESP32-DOWDQ6, ESP32-DOWD, and ESP32-SOWD
chips)

. 2 MiB (ESP32-D2WD chip)

. 4 MiB (ESP32-PICO-D4 SiP module)

m Low Power: ensures that you can still use ADC conversions, for example,
during deep sleep.
m Peripheral Input/Output:
peripheral interface with DMA that includes capacitive touch
ADCs (Analog-to-Digital Converter)
DACs (Digital-to-Analog Converter)
I2C (Inter-Integrated Circuit)
UART (Universal Asynchronous Receiver/Transmitter)
SPI (Serial Peripheral Interface)
IS (Integrated Interchip Sound)
RMII (Reduced Media-Independent Interface)
PWM (Pulse-Width Modulation)

B Security: hardware accelerators for AES and SSL/TLS

3/137

LAFVIN

ESP32 Development Boards

ESP32 refers to the bare ESP32 chip. However, the “ESP32” term is also used to
refer to ESP32 development boards. Using ESP32 bare chips is not easy or
practical, especially when learning, testing, and prototyping. Most of the time,
you’ll want to use an ESP32 development board.

We’'ll be using the ESP32 DEVKIT V1 board as a reference.The picture below
shows the ESP32 DEVKIT V1 board, version with 30 GPIO pins.

- = —_——
(L [T RS AL L0 0 A

X0022023

TIRRR0E

TX2 05 D18 019 D2ARXOT.

| o
L
] =
=
Y
e
T

ESP32 DEUKITUI "

4/137

LAFVIN

Specifications — ESP32 DEVKIT V1

The following table shows a summary of the ESP32 DEVKIT V1 DOIT board

features and specifications:

Number of cores | 2 (dual core)

Wi-Fi 2.4 GHz up to 150 Mbits/s

BLE (Bluetooth Low Energy) and legacy
Bluetooth

Bluetooth

Architecture 32 bits

Clock frequency Up to 240 MHz

RAM 512 KB

Pins 30(depending on the model)

5/137

l_ A F F'."” N

Peripherals

Capacitive touch, ADC (analog to digital
converter), DAC (digital to analog
converter), 12C (Inter-Integrated Circuit),
UART (universal asynchronous
receiver/transmitter), CAN 2.0 (Controller
Area Netwokr), SPI (Serial Peripheral
Interface), 12S (Integrated Inter-IC
Sound), RMII (Reduced
Media-Independent Interface), PWM

(pulse width modulation), and more.

Built-in buttons

RESET and BOOT buttons

built-in blue LED connected to GPIO2;

Built-in LEDs built-in red LED that shows the board is
being powered

USB to UART
CP2102

bridge

6/137

LAF'

VOLTAGE REGUL ATOR

MOSOGOHOHBE G
& VINGHDD13 012014027 Dzsnzausauazaag

AANTENNA

3U3GNDOLS D2 D4.RX2TX2 [35 DIGDLSIIZIRXUTKOD22023
o6 666k e

CP2102 ESP-WROOM-32

It comes with a microUSB interface that you can use to connect the board to your

computer to upload code or apply power.

It uses the CP2102 chip (USB to UART) to communicate with your computer via a
COM port using a serial interface. Another popular chip is the CH340. Check
what's the USB to UART chip converter on your board because you’ll need to
install the required drivers so that your computer can communicate with the board

(more information about this later in this guide).

This board also comes with a RESET button (may be labeled EN) to restart the
board and a BOOT button to put the board in flashing mode (available to receive

code). Note that some boards may not have a BOOT button.

It also comes with a built-in blue LED that is internally connected to GPIO 2. This
LED is useful for debugging to give some sort of visual physical output. There’s

also a red LED that lights up when you provide power to the board.

7/137

LAFVIN

ESP32 Pinout

The ESP32 peripherals include:

= 18 Analog-to-Digital Converter (ADC) channels
= 3 SPlinterfaces

= 3 UART interfaces

= 212C interfaces

= 16 PWM output channels

= 2 Digital-to-Analog Converters (DAC)

= 212S interfaces

= 10 Capacitive sensing GPIOs

8/137

The ADC (analog to digital converter) and DAC (digital to analog converter)

features are assigned to specific static pins. However, you can decide which pins

are UART, 12C, SPI, PWM, etc — you just need to assign them in the code. This is
possible due to the ESP32 chip’s multiplexing feature.

Although you can define the pins properties on the software, there are pins

assigned by default as shown in the following figure

ESP32 DEVKIT V1

EN

| sensor VP | ADCLCHO || GPIO36
| Sensor VN | ADC1 CHA I."GP'E'EQH

ADC1 CHB | GPIO34

ADCICH? || GPIO35
[ToucHs || ADC1 CHa | GPID32
[ToucHs || aocichHs || Grio33
| DAcl || aDc2 cHE || GPIO25
[oacz | [apcz cHa |[GPIO26

el

(-ToucH7 | (Aoca cir] (GPIO27

HSPICLK |[ToucHs || ADcz cH6 || GPIO14

[HSPI MISO | (T¥GUERS | | Apc2 cHs |[GPIO12 |

[HEPI MOSE || ToucH4 :' GPIO13

| GPIO23 || VEPI MOSI
| GPIO22 || 12€5CL
[GPIO1 || UARTOTX
(W | GFPIO3 || UART 0 RX
GPIO21 || 12CSDA
GPIO19 | [VSPIMISO
| GPIO18 || V&PI1CLK
| GPIOS || WSPICSO
[GPIO17 | [UART 27X
GPIO16 || UART 2 RX

ESP-WROOM-32

GPIO4 || ADC2 CHO || TOUCHOD |

GPIO2 || ADC2 CH2 || TOUCHZ |

GPIO15 TOUCH3

V3

9/137

HSP| C50

LAFVIN

Additionally, there are pins with specific features that make them suitable or not
for a particular project. The following table shows what pins are best to use as

inputs, outputs and which ones you need to be cautious.

The pins highlighted in green are OK to use. The ones highlighted in yellow are
OK to use, but you need to pay attention because they may have an unexpected
behavior mainly at boot. The pins highlighted in red are not recommended to use

as inputs or outputs.

GP
Input | Output Notes
10
0 outputs PWM signal at boot, must be LOW
to enter flashing mode
(BT X pin debug output at boot

connected to on-board LED, must be left

floating or LOW to enter flashing mode

w
Y

()]
2

DN HIGH at boot

F=N
4

outputs PWM signal at boot, strapping pin

12 boot fails if pulled high, strapping pin

13

=

14

=

outputs PWM signal at boot

15

=

outputs PWM signal at boot, strapping pin

10/137

LAFVIN

16
17
18
19
21
22
23
25
26
27
32
33
34

35

36

39

Continue reading for a more detail and in-depth analysis of the ESP32 GPIOs and

its functions.

11/137

l_ A F ﬁri{r _: 'y

Input only pins

GPIOs 34 to 39 are GPIs — input only pins. These pins don’t have internal pull-up

or pull-down resistors. They can’t be used as outputs, so use these pins only as

inputs:
= GPIO 34
= GPIO 35
= GPIO 36
= GPIO 39

SPI flash integrated on the ESP-WROOM-32

GPIO 6 to GPIO 11 are exposed in some ESP32 development boards. However,
these pins are connected to the integrated SPI flash on the ESP-WROOM-32 chip
and are not recommended for other uses. So, don’t use these pins in your

projects:

. GPIO 6 (SCK/CLK)
. GPIO 7 (SDO/SDO)

. GPIO 8 (SDI/SD1)

. GPIO 9 (SHD/SD2)

. GPIO 10 (SWP/SD3)
. GPIO 11 (CSC/CMD)

Capacitive touch GPIOs

The ESP32 has 10 internal capacitive touch sensors. These can sense variations
in anything that holds an electrical charge, like the human skin. So they can detect

variations induced when touching the GPIOs with a finger. These pins can be

12/137

LAFVIN

easily integrated into capacitive pads and replace mechanical buttons. The

capacitive touch pins can also be used to wake up the ESP32 from deep sleep.
Those internal touch sensors are connected to these GPIOs:

TO (GPIO 4)
T1 (GPIO 0)
T2 (GPIO 2)
T3 (GPIO 15)
T4 (GPIO 13)
. T5(GPIO 12)
T6 (GPIO 14)
T7 (GPIO 27)
T8 (GPIO 33)
T9 (GPIO 32)

Analog to Digital Converter (ADC)

The ESP32 has 18 x 12 bits ADC input channels (while the ESP8266 only has 1x
10 bits ADC). These are the GPIOs that can be used as ADC and respective

channels:

. ADC1_CHO (GPIO 36
. ADC1_CH1 (GPIO 37
. ADC1_CH2 (GPIO 38
. ADC1_CH3 (GPIO 39
. ADC1_CH4 (GPIO 32
. ADC1_CH5 (GPIO 33
. ADC1_CH®6 (GPIO 34

(
(
(
(
(
(
(
- ADC1_CH7 (GPIO 35

SN N SN S S SN S N

13/137

LAFVIN

. ADC2_CHO (GPIO 4)
. ADC2_CH1 (GPIO 0)
. ADC2_CH2 (GPIO 2)
- ADC2_CH3 (GPIO 15
. ADC2_CH4 (GPIO 13
- ADC2_CH5 (GPIO 12
. ADC2_CH6 (GPIO 14
- ADC2_CH7 (GPIO 27
. ADC2_CH8 (GPIO 25
. ADC2_CH9 (GPIO 26)

Note:ADC2 pins cannot be used when Wi-Fi is used. So, if you're using

SN N SN N SN N

the value from an ADC2 GPIO, you may conside

using an ADC1 GPIO instead. That should solve your problem.

The ADC input channels have a 12-bit resolution. This means that you can get
analog readings ranging from 0 to 4095, in which O corresponds to 0V and 4095 to
3.3V. You can also set the resolution of your channels on the code and the ADC

range.

The ESP32 ADC pins don’t have a linear behavior. You'll probably won’t be able
to distinguish between 0 and 0.1V, or between 3.2 and 3.3V. You need to keep
that in mind when using the ADC pins. You'll get a behavior similar to the one

shown in the following figure.

14/137

LAFVIN

Voltage vs ADC Reading

A

QoD 010 020 030 040 OS50 060 070 QB0 OS0 100 110 130 130 140 150 L0 170 LBO 130 200 210 220 230 240 250 260 270 280 250 100 110 320 330

Digital to Analog Converter (DAC)

There are 2 x 8 bits DAC channels on the ESP32 to convert digital signals into

analog voltage signal outputs. These are the DAC channels:

. DAC1 (GPIO25)
. DAC2 (GPI026)

RTC GPIOs

There is RTC GPIO support on the ESP32. The GPIOs routed to the RTC
low-power subsystem can be used when the ESP32 is in deep sleep. These RTC

GPIOs can be used to wake up the ESP32 from deep sleep when the Ultra Low

15/137

LAFVIN

Power (ULP) co-processor is running. The following GPIOs can be used as

an external wake up source.

. RTC_GPIOO (GPIO36)
. RTC_GPIO3 (GPIO39)
. RTC_GPIO4 (GPIO34)
. RTC_GPIO5 (GPIO35)
. RTC_GPIO6 (GPI025)
. RTC_GPIO7 (GPI026)
. RTC_GPIO8 (GPIO33)
. RTC_GPIO9 (GPIO32)
. RTC_GPIO10 (GPIO4)
. RTC_GPIO11 (GPIOO)
. RTC_GPIO12 (GPIO2)
. RTC_GPIO13 (GPIO15)
. RTC_GPIO14 (GPIO13)
. RTC_GPIO15 (GPIO12)
. RTC_GPIO16 (GPIO14)
. RTC_GPIO17 (GPIO27)

PWM

The ESP32 LED PWM controller has 16 independent channels that can be
configured to generate PWM signals with different properties. All pins that can act
as outputs can be used as PWM pins (GPIOs 34 to 39 can’t generate PWM).

To set a PWM signal, you need to define these parameters in the code:

= Signal’s frequency;
= Duty cycle;
= PWM channel;

16/137

l_ A F F'."” N

= GPIO where you want to output the signal.

12C

The ESP32 has two 12C channels and any pin can be set as SDA or SCL. When
using the ESP32 with the Arduino IDE, the default 12C pins are:

. GPIO 21 (SDA)
. GPIO 22 (SCL)

If you want to use other pins when using the wire library, you just need to call:

Wire.begin(SDA, SCL);

SPI

By default, the pin mapping for SPI is:

SPI MOSI MISO CLK CS
VSPI GPIO 23 GPIO 19 GPIO 18 GPIO 5
HSPI GPIO 13 GPIO 12 GPIO 14 GPIO 15

17/137

LAFVIN

Interrupts

All GPIOs can be configured as interrupts.

Strapping Pins

The ESP32 chip has the following strapping pins:

= GPIO 0 (must be LOW to enter boot mode)

= GPIO 2 (must be floating or LOW during boot)
- GPIO4

= GPIO 5 (must be HIGH during boot)

= GPIO 12 (must be LOW during boot)

= GPIO 15 (must be HIGH during boot)

These are used to put the ESP32 into bootloader or flashing mode. On most
development boards with built-in USB/Serial, you don’t need to worry about the
state of these pins. The board puts the pins in the right state for flashing or boot

mode. More information on the ESP32 Boot Mode Selection can be found here.

However, if you have peripherals connected to those pins, you may have trouble
trying to upload new code, flashing the ESP32 with new firmware, or resetting the
board. If you have some peripherals connected to the strapping pins and you are
getting trouble uploading code or flashing the ESP32, it may be because those
peripherals are preventing the ESP32 from entering the right mode. Read

the Boot Mode Selection documentation to guide you in the right direction. After

resetting, flashing, or booting, those pins work as expected.

18/137

LAFVIN

Pins HIGH at Boot

Some GPIOs change their state to HIGH or output PWM signals at boot or reset.
This means that if you have outputs connected to these GPIOs you may get

unexpected results when the ESP32 resets or boots.

GPIO 1
GPIO 3
GPIO 5
GPIO 6 to GPIO 11 (connected to the ESP32 integrated SPI flash memory

— not recommended to use).
GPIO 14
GPIO 15

Enable (EN)

Enable (EN) is the 3.3V regulator’s enable pin. It's pulled up, so connect to ground
to disable the 3.3V regulator. This means that you can use this pin connected to a

pushbutton to restart your ESP32, for example.

GPIO current drawn

The absolute maximum current drawn per GPIO is 40mA according to the

‘Recommended Operating Conditions” section in the ESP32 datasheet.

ESP32 Built-In Hall Effect Sensor

The ESP32 also features a built-in hall effect sensor that detects changes in the

magnetic field in its surroundings

19/137

L AFVIN
ESP32 Arduino IDE

There’s an add-on for the Arduino IDE that allows you to program the ESP32
using the Arduino IDE and its programming language. In this tutorial we’ll show
you how to install the ESP32 board in Arduino IDE whether you’re using Windows,
Mac OS X or Linux.

Prerequisites: Arduino IDE Installed

Before starting this installation procedure, you need to have Arduino IDE installed
on your computer. There are two versions of the Arduino IDE you can install:

version 1 and version 2.

You can download and install Arduino IDE by clicking on the following

link: arduino.cc/en/Main/Software

Which Arduino IDE version do we recommend? At the moment, there are some
plugins for the ESP32 (like the SPIFFS Filesystem Uploader Plugin) that are not
yet supported on Arduino 2. So, if you intend to use the SPIFFS plugin in the

future, we recommend installing the legacy version 1.8.X. You just need to scroll

down on the Arduino software page to find it.

20/137

https://www.arduino.cc/en/Main/Software

LAFVIN

Installing ESP32 Add-on in Arduino IDE

To install the ESP32 board in your Arduino IDE, follow these next instructions:

1.In your Arduino IDE, go to File> Preferences

@' E5P52_data_logging | Arduine 1.£
File | Edit Sketch Tools Help

Mew Ctrl+MN

Open... Ctrl+ 0

Open Recent »
Sketchbook ¢
Examples -
Close Chrl+W

Save Ctri+5

Save As... Ctrl+5Shift+5

Page Setup Chrl+5Shift+P
Print Ctrl+P

I Preferences Ctrl+Comma I

Chuit Ctrl+0C

2.Enter the following into the “Additional Board Manager URLSs” field:

https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_index.json

Then, click the “OK” button:

21/137

l_ A F ﬁri{r _: 'y

Settings Network

Sketchbook location:

.t;E‘_l,l_ls!a.rs.'!s_arir!‘ﬂc.:u:.l,!me_n.tlsl‘nﬁrduinq | | Browse
Editor language: ?System Default v | (requires restart of Arduino)

Editor font size: 7

Interface scale: @ Automatic | 100 : o {requires restart of Arduino)

Theme: Default theme -~ | (requires restart of Arduino)

Show verbose output during: [| compilation [upload

Compiler warnings: Nune v |

@ Cisplay line numbers [] Enable Code Folding

B Verify code after upload [] Use external editor

8 Check for updates on startup B save when verifying or uploading

[] Use accessibility features

| Additional Boards Manager URLs: :htn:us:,.",.’raw.gimubusermntent.mm,Fespressif,.’arduinn—EspErEfgh—pagesfpadcage_Esp3?__index.jsun, htt| E

More preferences can be edited directly in the file
C:\Users\sarin\AppCataiocal\Wrduino 15preferences. it

(edit only when Arduino is not running)
I
0K Cancel

Note: if you already have the ESP8266 boards URL, you can separate the URLs

with a comma as follows:

https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_index.json,

http://arduino.esp8266.com/stable/package_esp8266com_index.json

3.0pen the Boards Manager. Go to Tools > Board > Boards Manager...

22/137

LAF'

€8 Code_Test | Arduine 1.8.5 — O 4

Auto Format Ctrl+T

Archive Sketch
Code_Test Fix Encoding & Reload
Serial Monitor Ctrl+Shift+M |
]) Eoards Manager...
- Serial Plotter Ctri+ Shift+L
' Arduino AVR Boards
WiFi101 Firmware Updater Archifibo Yo

Shoas Rrdiiol et e ; ® Arduino/Genuino Uno

Arduino Duemilanove or Diecimila

Port
// Load 1 Get Board Info Arduino Nano
#include : Arduino/Genuino Mega or Mega 2560
tinclude Programmer: "AVRISP mkll" H Arduino Mega ADK
Burn Bootloader Arduino Leonardo
$include <OneWire.h> EVENAIG S Esw £
< . Arduino/Genuino Micro

Arduino Esplora
Arduino Mini
Arduino Ethernet
Arduino Fio
Arduino BT

LilyPad Arduino USE

Arduino/GSenui LilyPad Arduino
Arduine Pro or Pro Mini

Arduino NG or older
4. Search for ESP32 and press install button for the “ESP32 by Espressif

Systems”:

23/137

LAFVIN

@' Boards Manager

Type !_.Ml |IES|:I32 I

esp32 by Espressif Systems
Boards included in this package:
ESP32 Dev Module, WEMOS LoLin32.
Maore info

[l talglRiens = (3/3), Downloaded 30,228kb of 125, 719kb,

5.That’s it. It should be installed after a few seconds.

@ Boards Manager

Type !AH w | Eesp&',z

esp32 by Espressif Systems version 1.0.2 INSTALLED #
Boards included in this package:

ESP32 Dev Module, WEMOS Lolin32.
Maore info

E.Selectversion vu Install Remove |

24/137

LAFVIN

Upload Test Code

Plug the ESP32 board to your computer. With your Arduino IDE open, follow

these steps:

1. Select your Board in Tools > Board menu (in my case it's the DOIT ESP32
DEVKIT V1)

% sketch_decl2a | Arduine 1.8.5

File Edit Sketch Tools Help

Auto Format Ctrl+T
Archive Sketch

sketch_dec12 Fix Encoding & Reload

1 void s Serial Monitor Ctrl+Shift+M

L e Serial Plotter Ctrl+5Shift+L. | 1n once:

[+

Lad

WiFi101 Firmware Updater

1
bt

F 3

e

Board: "DOITESP32 DEVKIT V1"
o Flash Frequency: “80MHz" . Adafrurt ESP32 Feather

7 /7 p Upload Speed: "821600" ; ModeMCU-325
: MH ET LIVE ESP32DevKIT

g Core Debug Level "None"
5) Port: "COM4" MH ET LIVE ESP32Minikit
Gt Boaid i ESP32vn loT Uno
[+ vorespsz pevirrvs |
Programmer: "AVRISP mkll" ; OLIMEX ESP32-EVE
B Sodtioadss OLIMEX ESP32- GATEWAY

ThaikasyElec's E5Pino32
M355tack-Core-ESP32
Heltec WIFI_Kit_32
Heltec WIFl LoRa 32
ESPectro32
Microduino-CoreE5P32

2. Select the Port (if you don’t see the COM Port in your Arduino IDE, you need to
install the CP210x USB to UART Bridge VCP Drivers):

25/137

https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers

File Edit Sk

LAFVIN

Blink_sketch

11/%

ch | Tools Help

Auto Format Ctrl+T
Archive Sketch

Fix Encoding & Reload

Serial Monitor Ctrl+Shift+M
Senal Plotter Ctrl+Shift+L

WiFi101 Firmware Updater

Board: "DOIT ESP32 DEVKIT V1" >
Flash Frequency: "80MHz" »
Upload Speed: "921600" »

3. Open the following example under File > Examples > WiFi

(ESP32) > WiFiScan

26/137

LAFVIN

&% sketch_dec12a | Arduino 1.8.5
File Edit Sketch Tools Help

MNew Ctrl+ I

Open... Ctrl+ 0

Open Recent

Sketchbook -

Examples i A hee:

Close Ctrl+W Har 7

ps ChrleS ESP32 BLE Arduino b

SaveAs.. Cirl+Shift+S . :
HTTPClient >

Page Setup Ctrl+ Shift+P Preferences ?

Print Ctrl+P $D(esp32) ypeatedly:

Preferences Ctrl+Comma SF}_MMC 4
SimpleBLE >

Quit Ctrl+0 SPIFFS :.
Update ¥
WiFi 3 ETH_LANST720
WiFiClientSecure ; ETH_TLK110
Examples from Custom Libraries SimpleWiFiServer
Adafruit 1L19241 . WiFiBlueToothSwitch
Adafruit NeoPixel ; WiFiClient
Adafruit 55071306 . WiFiClientBasic
Arduinolson ; WiFiClientEvents
DallasTemperature 3 WiFiClient5taticlP
DHT sensor likrary ; WiFilPvE
Embedis ; WiFiMulti
ESP Async UDP {I WiFiScan
ESP Async WebServer = WiFiSmartConfig
B AoyncdCl 7 WiFiTelnetToSerial
ESP2266 and ESP32 Oled Driver for 55E WiEIUDPClient
ESP2266 Weather Station ; WPS

4. A new sketch opens in your Arduino IDE:

27/137

LAFVIN

&9 WiFiScan | Arduing 1.8.5 - O X

File Edit Sketch Tools Help

WiFiScan

1 ~
2 =

4 n

€ #include "WiFi.h"

8 woid setup/()

94
10 Serial.begin (115200} ;
12 // Set WiFi to station mode and disconnect from an AP if it was previocusl
13 WiFi.mode (WIFI STA) ;
14 WiFi.disconnect ()
i i delay(100);
17 Serial .println("Setup done™);
18 %
20 woid loop () ¥

< >

WEIT W1, BOMH=z 00, None on COhl4

5. Press the Upload button in the Arduino IDE. Wait a few seconds while the code

compiles and uploads to your board.

6. If everything went as expected, you should see a “Done uploading.” message.

28/137

DOIT ESP32 DPEVEKIT W1, B0MH=z, 921600, None on COMS

7. Open the Arduino IDE Serial Monitor at a baud rate of 115200:

8. Press the ESP32 on-board Enable button and you should see the networks

available near your ESP32:

29/137

LAFVIN

€9 comd - O X
| | send |
scan done £
2 networks found
1l: MEQO-6Z20B4B (—-49)*
2: MEO-WiFi (-50)
scan start
scan done
2 networks found
1l: MEQ-cZ0B4B (—-48)*
Z: MEO-WiFi (—-45)
L
[] Autoseroll Both NL &CR 115200 baud | | Clear output

30/137

l_ A F F'."” N

Troubleshooting

If you try to upload a new sketch to your ESP32 and you get this error message “A
fatal error occurred: Failed to connect to ESP32: Timed out... Connecting...“. It

means that your ESP32 is not in flashing/uploading mode.
Having the right board name and COM por selected, follow these steps:

= Hold-down the “BOOT” button in your ESP32 board

= Press the “Upload” button in the Arduino IDE to upload your sketch:

= After you see the “Connecting....” message in your Arduino IDE, release
the finger from the “BOOT” button:

31/137

LOIT ESP32 DEVEIT W1, B0MHz, 921600, None on COM34

= After that, you should see the “Done uploading” message
That’s it. Your ESP32 should have the new sketch running. Press the “ENABLE”
button to restart the ESP32 and run the new uploaded sketch.

You'll also have to repeat that button sequence every time you want to upload a
new sketch.

32/137

LAFVIN
Project 1 ESP32 Inputs Outputs

In this getting started guide you’ll learn how to read digital inputs like a button

switch and control digital outputs like an LED using the ESP32 with Arduino IDE.

Prerequisites

We’'ll program the ESP32 using Arduino IDE. So, make sure you have the ESP32

boards add-on installed before proceeding:

= Installing ESP32 Add-on in Arduino IDE

ESP32 Control Digital Outputs

First, you need set the GPIO you want to control as an OUTPUT. Use

the pinMode() function as follows:
pinMode(GPIO, OUTPUT);

To control a digital output you just need to use the digitalWrite() function, that
accepts as arguments, the GPIO (int number) you are referring to, and the state,
either HIGH or LOW.

digitalWrite(GPIO, STATE);

All GPIOs can be used as outputs except GPIOs 6 to 11 (connected to the
integrated SPI flash) and GPIOs 34, 35, 36 and 39 (input only GPIOs);

33/137

LAFVIN

ESP32 Read Digital Inputs

First, set the GPIO you want to read as INPUT, using the pinMode() function as

follows:
pinMode (GPIO, INPUT);

To read a digital input, like a button, you use the digitalRead() function, that

accepts as argument, the GPIO (int number) you are referring to.
digitalRead(GPIO);

All ESP32 GPIOs can be used as inputs, except GPIOs 6 to 11 (connected to the
integrated SPI flash).

Project Example

To show you how to use digital inputs and digital outputs, we’ll build a simple
project example with a pushbutton and an LED. We’'ll read the state of the

pushbutton and light up the LED accordingly as illustrated in the following figure.

34/137

LAFVIN

Pushbutton pressed LED on

Pushbutton not pressed LED off

Parts Required

Here’s a list of the parts to you need to build the circuit:

« ESP32 DEVKIT V1
= 5mmLED

= 220 Ohm resistor
= Pushbutton

= 10k Ohm resistor

= Breadboard

= Jumper wires

Schematic Diagram

Before proceeding, you need to assemble a circuit with an LED and a pushbutton.
We'll connect the LED to [€]g[®)s and the pushbutton to [€lg[OR:.

35/137

LAFV

ESP-WROOM-32

ARRRARARARARANANR
3V3GND D15 D2 D4 RX2TX2 D5 D18 D19 D21 RXOTX0 D22 D23

© 0600000000000 00
IN GND D13 D12 D14 D27 D26 D25 D33 D32 D35 D34 VN VP EN

220 ()
l............

GPI04

e e o L o

uonng

36/137

LAFVIN

Code

Open the code Project_ 1_ESP32 Inputs_Outputs.ino in arduino IDE

// set pin numbers
const int buttonPin = 4; // the number of the pushbutton pin
const int ledPin = 5; // the number of the LED pin
// variable for storing the pushbutton status
int buttonState = 9;
void setup() {
Serial.begin(115200);

pinMode(buttonPin, INPUT); // initialize the pushbutton pin as an

input

pinMode(ledPin, OUTPUT); // initialize the LED pin as an output

void loop() {
// read the state of the pushbutton value

buttonState = digitalRead(buttonPin);

37/137

LAFVIN

Serial.println(buttonState);
// check if the pushbutton is pressed.
// if it is, the buttonState is HIGH
if (buttonState == HIGH) {

// turn LED on

digitalWrite(ledPin, HIGH);
} else {

// turn LED off

digitalWrite(ledPin, LOW);

How the Code Works

In the following two lines, you create variables to assign pins:

const int buttonPin = 4;

const int ledPin = 5;

38/137

LAFVIN

The button is connected to [€]gd(®F:! and the LED is connected to ([€]g(@Xs. VWWhen
using the Arduino IDE with the ESP32, 4 corresponds to [El[®: and 5
corresponds to [EIg[O)5).

Next, you create a variable to hold the button state. By default, it's 0 (not pressed).

int buttonState = 0;

In the setup(), you initialize the button as an INPUT, and the LED as an OUTPUT.
For that, you use the pinMode() function that accepts the pin you are referring to,
and the mode: INPUT or OUTPUT.

pinMode(buttonPin, INPUT);

pinMode(ledPin, OUTPUT);

In the loop() is where you read the button state and set the LED accordingly.

In the next line, you read the button state and save it in the buttonState variable.

As we’ve seen previously, you use the digitalRead() function.
buttonState = digitalRead(buttonPin);
The following if statement, checks whether the button state is HIGH. If it is, it turns

the LED on using the digitalWrite() function that accepts as argument the ledPin,
and the state HIGH.

if (buttonState == HIGH)

39/137

LAFVIN

digitalWrite(ledPin, HIGH);

If the button state is not HIGH, you set the LED off. Just set LOW as a second

argument to in the digitalWrite() function.

else

digitalWrite(ledPin, LOW);

Uploading the Code

Before clicking the upload button, go to Tools > Board, and select the
board :DOIT ESP32 DEVKIT V1 board.

Go to Tools > Port and select the COM port the ESP32 is connected to. Then,

press the upload button and wait for the “Done uploading” message.

40/137

LAFVIN

Note:If you see a lot of dots (connecting... ...) on the debugging window and
the “Failed to connect to ESP32: Timed out waiting for packet header” message,
that means you need to press the ESP32 on-board BOOT button after the dots

start appearing.Troubleshooting

Demonstration

After uploading the code, test your circuit. Your LED should light up when you

press the pushbutton:

/_"\

L) - - i
unrunnnmz-:n 027 D3802A03I G208 034 LM '-"'- - and ; ’I‘l

e e L Ll b

LI - w
L - &

'"-Jtlwiq-nn
TEeREEPrNRER

- Iﬁﬂ*nvwr-rnrl
S b FER R EE AR
R L

e
Gl S H Al R
PRR R E R R R AR
PRE R R R R AR
LS N)

L
'
~
Ly
"
ge oF &%

[O) LI B A L]
Ll " nmE ®maws 1

e — i A 1)

41/137

LAFVIN

And turn off when you release it:

“ L)

TGS

f

(C#.3l% -Zspeapnuanesee

UIGNODLS D2 DY AXZTH2 DS oLame EIE‘I. HIFTI?DE?BZ?_

; EAFEGCEE =
FErerFrecmEF
EERER AR
FREEBRFRNRER
'S & &8 B B F & & B

NnNANNEENNNSD
Lol ol BB E
NMNErFMANEMNND
PRRE R R R AR
FEEPFERAR 0N

oy gs,

42/137

l_ A F T. | E'--x
Project 2 ESP32 Analog Inputs

This project shows how to read analog inputs with the ESP32 using Arduino IDE.
Analog reading is useful to read values from variable resistors like potentiometers,

or analog sensors.

Analog Inputs (ADC)

Reading an analog value with the ESP32 means you can measure varying

voltage levels between 0 V and 3.3 V.

The voltage measured is then assigned to a value between 0 and 4095, in which 0
V corresponds to 0, and 3.3 V corresponds to 4095. Any voltage between 0 V and

3.3 V will be given the corresponding value in between.

Voltage levels between OV to 3.3V

| |
0 4095
oV 3.3V

ADC is Non-linear

Ideally, you would expect a linear behavior when using the ESP32 ADC pins.
However, that doesn’t happen. What you’ll get is a behavior as shown in the

following chart:

43/137

LAFVIN

Voltage vs ADC Reading

4000

3000

o
0od 010 020 030 G40 050 060 Q70 QB0 OS0 100 110 130 130 140 150 160 170 180 150 200 210 230 230 240 250 260 170 280 2150 100 110 320 330

This behavior means that your ESP32 is not able to distinguish 3.3 V from 3.2 V.

You'll get the same value for both voltages: 4095.

The same happens for very low voltage values: for 0 V and 0.1 V you’ll get the

same value: 0. You need to keep this in mind when using the ESP32 ADC pins.

analogRead() Function

Reading an analog input with the ESP32 using the Arduino IDE is as simple as

using the analogRead() function. It accepts as argument, the GPIO you want to
read:

analogRead(GPIO);

Only 15 are available in the DEVKIT V1board (version with 30 GPIOs).

44/137

LAEV

Grab your ESP32 board pinout and locate the ADC pins. These are highlighted

with a red border in the figure below.

ESP32 DEVKIT V1
] ‘_I__I_I I_H ®

CEn) iy [GPI023 | [VSPIMos! |

(‘SensorvP [ADCI CHO | GPIO36 (GPiD22 | [12€SEL |
(Sansor VN J_ADC1 CH3] [GPI039 | N (GPio1 | [UARTOTX |
(oci cris)| Gpiosa) ESP-WROOM-32 [GPIO3 | [UART O RX

ADCICH? || GPIO35 | | GPIO21 || 12€5DA |

[ToucHs | | ADc1 cHa | GPIO32 | [GPIO19 | [VSPIMISO |
[ToucHs || ApcicHs | GPIO33 |
[pAct | [Apca s |(GPIO25 |
[oacz || apcz cHe | GPIO26 |

((¥6uEH7 | [[ADc2 cH7 | [GPIO27 |

[(GPID17 | [UART 27X
| GPIO16 || UART 2 RX

GPI04 || apcz cHo | [TOUEHD |
[GPIO2 || ADC2 cH2 || TOUCHZ |
GPI015 |[abcz cha | TOUEH3 | Hseicso |

[HSPIMOSI | (" TougHa | [Apca cha][GPIO13 |
GND

These analog input pins have 12-bit resolution. This means that when you read an

analog input, its range may vary from 0 to 4095.

Note: ADC2 pins cannot be used when Wi-Fi is used. So, if you're using Wi-Fi
and you’re having trouble getting the value from an ADC2 GPIO, you may

consider using an ADC1 GPIO instead, that should solve your problem.

To see how everything ties together, we’ll make a simple example to read an

analog value from a potentiometer.

45/137

l_ A F F'."” N

Parts Required

For this example, you need the following parts:

ESP32 DEVKIT V1 Board
Potentiometer
Breadboard

Jumper wires

Schematic

Wire a potentiometer to your ESP32. The potentiometer middle pin should be
connected to GPIO 4. You can use the following schematic diagram as a

reference.

©00060000000000g
GND D13 D12 D14 D27 D26 D25 D33 D32 D35 D34 VN VP EN

s3

Il§ E
bl —) o o o o
IIE 8
-=s = z e o o o
anes = s
am = 0
- L
D5 D18 D19 D21 RXO0 TX0 D22 D23 ® o o 0o o o
o © o 00 0 0 e o 0 0 0 @
s e e 0 0 0o ¢
s e e 0 0 0 o
= o o 0 0 0o o

o o ® 6 6 6 6 ¢ 6 o o o o o ©o o o o
o o o 6 6 o 6 6 ¢ ¢ o o o o ©o o o o
o o ® 6 6 6 6 ¢ ¢ o o o o o ©o o o o
o o ® © 6 6 ¢ 6 ¢ o6 0 o o o ©o O©o O o
o o ™N ® ¢ 6 6 ¢ 6 ¢ o 0 o o o ©°o o o
i [] L J
o o o e 6 o o o o o o o

Potentiometer (10k)

46/137

LAFVIN

Code

We’'ll program the ESP32 using Arduino IDE, so make sure you have the ESP32
add-on installed before proceeding:(If you have already done this step, you can

skip to the next step.)

= Installing ESP32 Add-on in Arduino IDE
Open the code Project_2 ESP32_ Inputs_Outputs.ino in arduino IDE

// Potentiometer is connected to GPIO 4 (Analog ADC2_ CH®)

const int potPin = 4;

// variable for storing the potentiometer valueint potValue = 0;

void setup() {

Serial.begin(115200);

delay(1000);}

void loop() {

// Reading potentiometer value

potValue = analogRead(potPin);

Serial.println(potValue);

delay(500);}

47/137

LAFVIN

This code simply reads the values from the potentiometer and prints those values

in the Serial Monitor.

In the code, you start by defining the GPIO the potentiometer is connected to. In

this example,
const int potPin = 4;

In the setup(), initialize a serial communication at a baud rate of 115200.

Serial.begin(115200);

In the loop(), use the analogRead() function to read the analog input from

the potPin.

potValue = analogRead(potPin);

Finally, print the values read from the potentiometer in the serial monitor.
Serial.println(potValue);

Upload the code provided to your ESP32. Make sure you have the right board and

COM port selected in the Tools menu.

Testing the Example

After uploading the code and pressing the ESP32 reset button, open the Serial
Monitor at a baud rate of 115200. Rotate the potentiometer and see the values

changing.

48/137

LAFVIN

L]
WIS RO Eh U LT ER

e T R K

rl

Wr TR

S v TR

et G

The maximum value you’ll get is 4095 and the minimum value is 0.

£ comd - o =

Z000 7

4095
4095
4095
4095
4095
4095
4095

X =
jmd
WD
L

n

[Y -

=
n

o o o i):]

W

49/137

LAFVIN

Wrapping Up

In this article you’'ve learned how to read analog inputs using the ESP32 with the

Arduino IDE. In summary:

The ESP32 DEVKIT V1 DOIT board (version with 30 pins) has 15 ADC pins
you can use to read analog inputs.

These pins have a resolution of 12 bits, which means you can get values
from 0 to 4095.

To read a value in the Arduino IDE, you simply use the | analogRead()
function.

The ESP32 ADC pins don’t have a linear behavior. You'll probably won’t be
able to distinguish between 0 and 0.1V, or between 3.2 and 3.3V. You need
to keep that in mind when using the ADC pins.

50/137

l_ A F T. | E'--x
Project 3 ESP32 PWM(Analog Output)

In this tutorial we’ll show you how to generate PWM signals with the ESP32 using

Arduino IDE. As an example we’ll build a simple circuit that dims an LED using the
LED PWM controller of the ESP32.

ESP32 LED PWM Controller

The ESP32 has a LED PWM controller with 16 independent channels that can be

configured to generate PWM signals with different properties.

Here’s the steps you'll have to follow to dim an LED with PWM using the Arduino
IDE:

1. First, you need to choose a PWM channel. There are 16 channels from 0 to 15.

2. Then, you need to set the PWM signal frequency. For an LED, a frequency of
5000 Hz is fine to use.

51/137

LAFVIN

3. You also need to set the signal’s duty cycle resolution: you have resolutions
from 1 to 16 bits. We'll use 8-bit resolution, which means you can control the

LED brightness using a value from 0O to 255.

4. Next, you need to specify to which GPIO or GPIOs the signal will appear upon.

For that you'll use the following function:
ledcAttachPin(GPIO, channel)

This function accepts two arguments. The first is the GPIO that will output the

signal, and the second is the channel that will generate the signal.

5. Finally, to control the LED brightness using PWM, you use the following

function:
ledcWrite(channel, dutycycle)

This function accepts as arguments the channel that is generating the PWM

signal, and the duty cycle.

Parts Required

To follow this tutorial you need these parts:

ESP32 DEVKIT V1 Board
Smm LED

220 Ohm resistor
Breadboard

Jumper wires

52/137

l_ A F ﬁri{r _: 'y

Schematic

Wire an LED to your ESP32 as in the following schematic diagram. The LED

should be connected to

VIN GND D13 D12 D14 D27 D26 D25 D33 D32 D35 D34 VN VP EN
[] I I ARRRRARARARARRARA
. am

s3

- ;

= o E :
a=n » = g o 0
e o ©° B : % IS o o ©

. » L]
JV3GNDD15 D2 D4 RX2TX2 D5 D18 D19 D21 RX0 TX0 D22 D23
® © o o o e 6 o o
e 6 o ¢ o o o o o o e 6 ¢ ¢ 6 o ¢ o o o o o o o
o © ¢ o o ¢ o o o o o O ¢ ¢ 6 ¢ o o o o o o o o
® 6 6 ¢ 6 o o o o o ® 6 6 ¢ 6 ¢ o o o o o oo o o
o 6 ¢ 6 o o o o o o O ¢ ¢ 6 ¢ o o o o o °o o o
o 6 ¢ ¢ o o o o o o O ¢ ¢ o ¢ o o ¢ o o °o o o
e ¢ o ¢ o o o o o ® 6 6 ¢ 6 ¢ ¢ o o o o o o o
o 6 ¢ ¢ o o o o o ® O 6 6 o ¢ o o o o o o o o
® © o ¢ o o o o o ® © O ¢ 6 6 ¢ o o o o o o o
e 6 6 ¢ o o o o o { e 6 ¢ ¢ 6 o ¢ o o o o o o o
220 Q

e 6 o o ©o {] o O ©o l o 6 o o e 6 o o o o o o
e o o o e © o o e 6 o o o e 6 o o e o ©°

Note: you can use any pin you want, as long as it can act as an output. All pins
that can act as outputs can be used as PWM pins. For more information about the
ESP32 GPIOs, read:

53/137

LAFVIN

We’'ll program the ESP32 using Arduino IDE, so make sure you have the ESP32
add-on installed before proceeding:(If you have already done this step, you can

skip to the next step.)

= Installing ESP32 Add-on in Arduino IDE
Open the code Project_ 3 ESP32 PWNM.ino in arduino IDE

// the number of the LED pin

const int ledPin = 4; // 4 corresponds to GPIO4

// setting PWM properties

const int freq = 5000;

const int ledChannel

[l
(o)
- e

const int resolution

Il
co
e

void setup(){

// configure LED PWM functionalitites

ledcSetup(ledChannel, freq, resolution);

// attach the channel to the GPIO to be controlled

ledcAttachPin(ledPin, ledChannel); }

54/137

LAFVIN

void loop(){

// increase the LED brightness

for(int dutyCycle = 0; dutyCycle <= 255; dutyCycle++){
// changing the LED brightness with PWM
ledcWrite(ledChannel, dutyCycle);

delay(15);

// decrease the LED brightness

for(int dutyCycle = 255; dutyCycle >= 0; dutyCycle--){
// changing the LED brightness with PWM
ledcWrite(ledChannel, dutyCycle);

delay(15);

b}

55/137

LAFVIN

You start by defining the pin the LED is attached to. In this case the LED is

attached to
const int ledPin = 4; // 16 corresponds to GPIO4

Then, you set the PWM signal properties. You define a frequency of 5000 Hz,
choose channel 0 to generate the signal, and set a resolution of 8 bits. You can

choose other properties, different than these, to generate different PWM signals.

const int freq = 5000;

const int ledChannel

Il
(o}
e

const int resolution

8;

In the setup(), you need to configure LED PWM with the properties you’ve defined
earlier by using the ledeSetup() function that accepts as arguments, the

ledChannel, the frequency, and the resolution, as follows:

ledcSetup(ledChannel, freq, resolution);

Next, you need to choose the GPIO you’ll get the signal from. For that use

the ledcAttachPin() function that accepts as arguments the GPIO where you want
to get the signal, and the channel that is generating the signal. In this example,
we’ll get the signal in the ledPin GPIO, that corresponds to . The channel

that generates the signal is the ledChannel, that corresponds to channel 0.

ledcAttachPin(ledPin, ledChannel);

In the loop, you'll vary the duty cycle between 0 and 255 to increase the LED

brightness.

56/137

LAFVIN

for(int dutyCycle = 0; dutyCycle <= 255; dutyCycle++){
// changing the LED brightness with PWM
ledcWrite(ledChannel, dutyCycle);

delay(15); }

And then, between 255 and 0 to decrease the brightness.

for(int dutyCycle = 255; dutyCycle >= 0; dutyCycle--){
// changing the LED brightness with PWM

ledcWrite(ledChannel, dutyCycle);

delay(15);

To set the brightness of the LED, you just need to use the ledcWrite() function that
accepts as arguments the channel that is generating the signal, and the duty

cycle.
ledcWrite(ledChannel, dutyCycle);

As we’re using 8-bit resolution, the duty cycle will be controlled using a value from
0 to 255. Note that in the ledcWrite() function we use the channel that is

generating the signal, and not the GPIO.

57/137

LAFVIN

Testing the Example

Upload the code to your ESP32. Make sure you have the right board and COM

port selected. Look at your circuit. You should have a dimmer LED that increases

and decreases brightness.

58/137

l_ A F ﬁri{r _: '
Project 4 ESP32 PIR Motion Sensor

This project shows how to detect motion with the ESP32 using a PIR motion
sensor.The buzzer will sound an alarm when motion is detected, and stop the

alarm when no motion is detected for a preset time (such as 4 seconds).

How HC-SR501 Motion Sensor Works

Detection Range Adjuster

Repeat Trigger Selector

Time Delay Adjuster

OGI;ID t< no motion->Low
UPUMS motion->HIGH

The working principle of HC-SR501 sensor is based on the change of the infrared
radiation on the moving object.To be detected by the HC-SR501 sensor, the
object must meet two requirements:

- The object is emitting the infrared way.

- The object is moving or shaking

So:

If an object is emitting the infrared ray but NoT moving (e.g, a person stands still
without moving), it is NoT detected by the sensor.

If an object is moving but NoT emitting the infrared ray (e.g, robot or vehicle), it is
NOT detected by the sensor.

59/137

LAFVIN

Introducing Timers

In this example we’ll also introduce timers. We want the LED to stay on for a
predetermined number of seconds after motion is detected. Instead of using
a delay() function that blocks your code and doesn’t allow you to do anything else

for a determined number of seconds, we should use a timer.

The delay() function

You should be familiar with the delay() function as it is widely used. This function
is pretty straightforward to use. It accepts a single int number as an argument.
This number represents the time in milliseconds the program has to wait until

moving on to the next line of code.

delay(time in milliseconds)

When you do delay(1000) your program stops on that line for 1 second.

delay() is a blocking function. Blocking functions prevent a program from doing
anything else until that particular task is completed. If you need multiple tasks to

occur at the same time, you cannot use delay().

For most projects you should avoid using delays and use timers instead.

The millis() function

60/137

LAFVIN

Using a function called millis() you can return the number of milliseconds that

have passed since the program first started.

millis()

Why is that function useful? Because by using some math, you can easily verify

how much time has passed without blocking your code.

Parts Required

To follow this tutorial you need the following parts

ESP32 DEVKIT V1 Board

PIR motion sensor (HC-SR501)
Active Buzzer

Jumper wires

= Breadboard

61/137

LAFVIN

Schematic

° e o o ® o o o e e o o
L] L] I LI ® o 0
e o o e o o o I ® e o o o 0o 0 0 o
o o o L ® o o o ® o 0 0 o
e o ® o o o0 0 © 0 0 0 0 0
o o o ® © o o 0 0 0 0 0 0 0 0
e o o L ® & & 0 0 0 0 0 o
o o o L L o e o 0 0 0 o
(] L] o L] o o ° o 0 o @
o L L] ° ® o ® 0o o o o
® [] ® ® ® & 0 0 e o o o o 0 o
. N 5D33D32D35D34 VN VP EN T O I
| ERRRRERERRARERERE + 5
] = - I/ Active Buzzer
n — 4
H g § * o e o o o
g = g ° e o o
. 8
H =

LLLLOL LT L]

.
3V3GNDD15 D2 D4 RX2TX2 D5 D18 D18 D21 RX0 TX0 D22 D23
© e 000006000000 00

Note:The working voltage of HC-SR501 is 5V. Use the Vin pin to power it.

62/137

LAFVIN

Code

Before proceeding with this tutorial you should have the ESP32 add-on installed
in your Arduino IDE. Follow one of the following tutorials to install the ESP32 on
the Arduino IDE, if you haven'’t already.(If you have already done this step, you
can skip to the next step.)

= Installing ESP32 Add-on in Arduino IDE
Open the code Project 4 ESP32 PIR_Motion_Sensor.ino in arduino IDE.

Demonstration

Upload the code to your ESP32 board. Make sure you have the right board and

COM port selected.Upload code reference steps.

Open the Serial Monitor at a baud rate of 115200.

Move your hand in front of the PIR sensor. The buzzer should turn on, and the
message is printed in the Serial Monitor saying “Motion detected!Buzzer alarm”.

After 4 seconds the buzzer should turn off.

63/137

LAFVIN

@ coms

Motion
Motion
Motion
Motion
Motion
Motion
Motion
Motion
Motion
Motion
Motion
Motion
Motion
Motion
Motion
Motion

detected!Buzzer
detected!Buzzer
detected!Buzzer
detected!Buzzer
detected!Buzzer
detected!Buzzer
detected!Buzzer
detected!Buzzer
detected!Buzzer
detected!Buzzer
detected!Buzzer
detected!Buzzer
detected!Buzzer
detected!Buzzer
detected!Buzzer
detected!Buzzer

M kutoseroll D Show timestamp

alarm!
alarm!
alarm!
alarm!
alarm!
alarm!
alarm!
alarm!
alarm!
alarm!
alarm!
alarm!
alarm!
alarm!
alarm!
alarm!

Terline v 115200 baud v | | Clesr output

64/137

LAFVIN
Project 5 ESP32 Switch Web Server

In this project you’ll create a standalone web server with an ESP32 that controls
outputs (two LEDs) using the Arduino IDE programming environment. The web
server is mobile responsive and can be accessed with any device that as a
browser on the local network. We'll show you how to create the web server and

how the code works step-by-step.

Project Overview

Before going straight to the project, it is important to outline what our web server

will do, so that it is easier to follow the steps later on.

= The web server you'll build controls two LEDs connected to the
ESP32 W IGP10 275

= You can access the ESP32 web server by typing the ESP32 IP address on
a browser in the local network;

= By clicking the buttons on your web server you can instantly change the
state of each LED.

Parts Required

For this tutorial you'll need the following parts:

« ESP32 DEVKIT V1 Board
= 2x5mm LED

= 2x 200 Ohm resistor

= Breadboard

= Jumper wires

65/137

LAFVIN

Schematic

Start by building the circuit. Connect two LEDs to the ESP32 as shown in the
following schematic diagram — one LED connected to [€]g(®04s), and the other

8JGPIO 27,

Note: We're using the ESP32 DEVKIT DOIT board with 36 pins. Before

assembling the circuit, make sure you check the pinout for the board you’re using.

GND D13 D12 D14 D27 D26 D25 D33 D32 D35D34 VN VP EN
[] . I I ARARAAAARARARARAS

S3

Ze-NOooAM-d

5 D18 D19 D21 RX0 TX0 D22 D23
000000

o ssssEEln

2

® > AEAAREARARAR

66/137

LAFVIN

Code

Here we provide the code that creates the ESP32 web server. Open the code
Project 5 ESP32_ Switch _Web_Server.ino in arduino IDE, but don’t upload it

yet. You need to make some changes to make it work for you.

We’'ll program the ESP32 using Arduino IDE, so make sure you have the ESP32
add-on installed before proceeding:(If you have already done this step, you can

skip to the next step.)

= |Installing ESP32 Add-on in Arduino IDE

Setting Your Network Credentials

You need to modify the following lines with your network credentials: SSID and

password. The code is well commented on where you should make the changes.

// Replace with your network credentials
const char* ssid = "REPLACE_WITH YOUR _SSID";

const char* password = "REPLACE_WITH_YOUR_PASSWORD";

Uploading the Code

Now, you can upload the code and and the web server will work straight away.

Follow the next steps to upload code to the ESP32:
1) Plug your ESP32 board in your computer;

2) In the Arduino IDE select your board in Tools > Board (in our case we’re using
the ESP32 DEVKIT DOIT board);

67/137

LAFVIN

€% sketch_dec12a | Arduine 1.8.5
File Edit Sketch Tools Help

Auto Format Ctrl+T
Archive Sketch
ABeich. dgcld Fix Encoding & Reload
1 void sy Serial Monitor Ctrl+Shift+M
2 /P Serial Plotter Ctrl+Shift+L n once:
i : WiFi101 Firmware Updater
5 Board “DOITESP32 DEVKITVI® ; s
ClvaiE. i Flash Frequency: "SO0MHz" : Adafruit ESP32 Feather
7 // pl Upload Speed: "921600" : NodeMCU-325
g Core Debug Level: "Mone” ; MH ET LIVE ESP32DevKIT
9} Port: "COMA4" : MH ET LIVE ESP32Minikit
Gat Board Info ESP32vn loT Uno
[= porreses2 peviarva
Programmer: "AVEISP mkll" ; OLIMEX ESP22-EVE
Biia Boolioader OLIMEX ESP32-GATEWAY

ThaiEasyElec's ESPino32
M55tack-Core-ESP32
Heltec WIFI_Kit_32
Heltec WIFl_LoRa_32
ESPectro32
Microduino-CoreE5P32

3) Select the COM port in Tools > Port.

9 sketch_dec12a | Arduino 1.8.5
File Edit Sketch Tools Help

Auto Format Ctrl+T
Archive Sketch
sEm e Fix Encoding & Reload
1 woid s Serial Monitor Ctrl+ Shift+M
2 P & Serial Plotter Ctrl+5hift+L. n once:
j , WiFi101 Firrnware Updater
c Board: "DOIT ESP32 DEVEIT V1" ?
6 wvoid 1 Flash Frequency: "80MHz" >
7 !/ D Upload Speed: "521600" >n repeated:
g Core Debug Level: "Mone” b
Sy "Férl::"C{Hy"I;lf“ 4 Serial ports
Get Board Info |. COM4
Programmer: "AVEISP mkll" >
Burn Bootloader

68/137

4) Press the Upload button in the Arduino IDE and wait a few seconds while the

code compiles and uploads to your board.

5) Wait for the “Done uploading” message.

DOIT ESP32 DEVKIT W1, 80MHz, 821800, None on COM4

Finding the ESP IP Address

After uploading the code, open the Serial Monitor at a baud rate of 115200.

OO0 BEHA o)

Press the ESP32 EN button (reset). The ESP32 connects to Wi-Fi, and outputs
the ESP IP address on the Serial Monitor. Copy that IP address, because you

need it to access the ESP32 web server.

69/137

LAFVIN

& coms - O *

| | o]

clk drv:0x00,q drv:0x00,d drv:0x00,cs0 drv:0x00,hd drv:0x00,"
mode:DIO, clock div:l

load:0x3fff0030,1len:1184

load:0x40078000,len:13160

load:0x40080400,1en:303¢6

entry 0x400805e4

Connecting to 005

WiFi connected.
[192.168.145.181
viE
£ >
@Autusnrull I:lShuw timestamp -Het].:i.ne Vi i115200 baud V| | Clear output

—

Accessing the Web Server

To access the web server, open your browser, paste the ESP32 IP address, and

you’ll see the following page.

Note: Your browser and ESP32 should be connected to the same LAN.

‘ Q ©@192.168.145.181/26/0ff C) \

ESP32 Web Server

GPIO 26 - State off

ON

GPIO 27 - State off

ON

70/137

LAFVIN

If you take a look at the Serial Monitor, you can see what’s happening on the
background. The ESP receives an HTTP request from a new client (in this case,

your browser).

& coms — O b4

Send

New Client.
GET /26/on HTTP/1.1
Host: 192.168.145.181
Connection: keep-alive

Upgrade—Insecure—-Requests: 1

User—-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.2; en-US)
Accept: text/html,application/xhtml+xml,application/xml;qg=0.
Referer: http://192.168.145.181/26/0off

Accept-Encoding: gzip, deflate

Accept—-Language: zh-CN,zh;g=0.9%9,en-US;g=0.8,en;g=0.7 3

W
E R e o o N I ol

< >

[+] sutozeroll [Shor timestamp ;Hewline v 1115200 haud V: Clear output |

W T TOETI RTTETT TT

You can also see other information about the HTTP request.

Demonstration

Now you can test if your web server is working properly. Click the buttons to
control the LEDs.

71/137

LAFVIN

s 80, S5 EF
3 Ko T

,fT/,/fT
16:23 ¥ C

— /ﬂjaugaiw
R espazwep SV

pi0 26 - St@te "

GpI0 27 - Stete off

At the same time, you can take a look at the Serial Monitor to see what’s going on
in the background. For example, when you click the button to turn [€]g[O4s ON,
ESP32 receives a request on the /26/on URL.

& coms — O *

H || Send |

[New Client.

; ET /26/on HTTP/1.1
Host: 192.168.145.181
IConnection: keep-alive

fUpgrade—Insecure—Requests: 1

[User—-RAgent: Mozilla/5.0 (Windows; U; Windows NT 5.2; en-US)
| 3 . i ;

Accept: text/html, application/xhtml+xml, application/xml;qg=0.

Referer: http://192.168.145.181/26/0off

Accept—Encoding: gzip, deflate ;

Accept—Language: zh-CN,zh;gq=0.9,en-US;g=0.8,en;g=0.7 Lﬂ
L

£ >

(7] Antarerals || Show Eimestonp Wewline v | 115200 baud ~ | Clesr output |

72/137

LAFVIN

When the ESP32 receives that request, it turns the LED attached to [€]glO}4s ON

and updates its state on the web page.

16:23 #1 © @1 0 S B

Q ©192.168.145.181/26/0n i

ESP32 Web Server

OFF

GPIO 27 - State off

The button for (€[04 works in a similar way. Test that it is working properly.

73/137

l_ A F ﬁri{r _: 'y

How the Code Works

In this section will take a closer look at the code to see how it works.

The first thing you need to do is to include the WiFi library.

##tinclude <WiFi.h>

As mentioned previously, you need to insert your ssid and password in the

following lines inside the double quotes.

const char* ssid = ;const char* password = ;

Then, you set your web server to port 80.

WiFiServer server(80);

The following line creates a variable to store the header of the HTTP request:

String header;

Next, you create auxiliar variables to store the current state of your outputs. If you

want to add more outputs and save its state, you need to create more variables.

String output26State = "off";

String output27State = "off";

You also need to assign a GPIO to each of your outputs. Here we are using [€]gl®)]
and [elgd[ep 4. You can use any other suitable GPIOs.

const int output26 = 26;const int output27 = 27;

setup()

74/137

LAFVIN

Now, let’s go into the setup(). First, we start a serial communication at a baud rate

of 115200 for debugging purposes.

Serial.begin(115200);

You also define your GPIOs as OUTPUTs and set them to LOW.
// Initialize the output variables as outputs
pinMode (output26, OUTPUT);

pinMode (output27, OUTPUT);

// Set outputs to LOW

digitalWrite(output26, LOW);

digitalWrite(output27, LOW);

The following lines begin the Wi-Fi connection with WiFi.begin(ssid, password),
wait for a successful connection and print the ESP IP address in the Serial

Monitor.

// Connect to Wi-Fi network with SSID and passwonrd

Serial.print("Connecting to ");

Serial.println(ssid);

WiFi.begin(ssid, password);while (WiFi.status() != WL_CONNECTED) {
delay(500);

Serial.print(".");

75/137

LAFVIN

// Print local IP address and start web server
Serial.println("");

Serial.println("WiFi connected.");
Serial.println("IP address: ");
Serial.println(WiFi.localIP());

server.begin();

loop()

In the loop() we program what happens when a new client establishes a

connection with the web server.

The ESP32 is always listening for incoming clients with the following line:

WiFiClient client = server.available();

// Listen for incoming clients

When a request is received from a client, we’ll save the incoming data. The while
loop that follows will be running as long as the client stays connected. We don’t
recommend changing the following part of the code unless you know exactly what

you are doing.

if (client) { // If a new client connects,

Serial.println("New Client."); // print a message out in the serial

port

76/137

LAFVIN

String currentLine = ""; // make a String to hold incoming data from

the client
while (client.connected()) { // loop while the client's connected

if (client.available()) { // if there's bytes to read from the

client,
char ¢ = client.read(); // read a byte, then
Serial.write(c); // print it out the serial monitor
header += c;
if (¢ == '\n") { // if the byte is a newline character

// if the current line is blank, you got two newline characters

in a row.
/ that's the end of the client HTTP request, so send a response:
if (currentLine.length() == 0) {

// HTTP headers always start with a response code (e.g.

HTTP/1.1 200 OK)

// and a content-type so the client knows what's coming, then

a blank line:
client.println("HTTP/1.1 200 OK");
client.println("Content-type:text/html");

client.println("Connection: close");

77/137

LAFVIN

client.println();

The next section of if and else statements checks which button was pressed in
your web page, and controls the outputs accordingly. As we’ve seen previously,

we make a request on different URLs depending on the button pressed.

// turns the GPIOs on and offif (header.indexOf("GET /26/on") >= 9)
{

Serial.println("GPIO 26 on");
output26State = "on";

digitalWrite(output26, HIGH);} else if (header.indexOf("GET

/26/o0ff") >= 0) {
Serial.println("GPIO 26 off");
output26State = "off";

digitalWrite(output26, LOW);} else if (header.indexOf("GET

/27/on") >= 0) {
Serial.println("GPIO 27 on");
output27State = "on";

digitalWrite(output27, HIGH);} else if (header.indexOf("GET

/27/o0ff") >= 0) {
Serial.println("GPIO 27 off");

output27State = "off";

78/137

LAFVIN

digitalWrite(output27, LOW);}

For example, if you've press the GPIO 26 ON button, the ESP32 receives a
request on the /26/ON URL (we can see that that information on the HTTP header
on the Serial Monitor). So, we can check if the header contains the

expression GET /26/on. If it contains, we change the output26state variable to
ON, and the ESP32 turns the LED on.

This works similarly for the other buttons. So, if you want to add more outputs, you

should modify this part of the code to include them.

Displaying the HTML web page

The next thing you need to do, is creating the web page. The ESP32 will be

sending a response to your browser with some HTML code to build the web page.

The web page is sent to the client using this expressing client.println(). You

should enter what you want to send to the client as an argument.

The first thing we should send is always the following line, that indicates that we

are sending HTML.

<IDOCTYPE HTML><html>

Then, the following line makes the web page responsive in any web browser.

client.println("<head><meta name=\"viewport\"
content=\"width=device-width, initial-scale=1\">");

And the following is used to prevent requests on the favicon. — You don’t need to

worry about this line.

client.println("<link rel=\"icon\" href=\"data:,\">");

79/137

LAFVIN

Styling the Web Page

Next, we have some CSS text to style the buttons and the web page appearance.
We choose the Helvetica font, define the content to be displayed as a block and
aligned at the center.

client.println("<style>html { font-family: Helvetica; display:
inline-block; margin: Opx auto; text-align: center;}");

We style our buttons with the #4CAF50 color, without border, text in white color,
and with this padding: 16px 40px. We also set the text-decoration to none, define
the font size, the margin, and the cursor to a pointer.

client.println(".button { background-color: #4CAF50; border: none;
color: white; padding: 16px 40px;");
client.println("text-decoration: none; font-size: 30px; margin: 2px;
cursor: pointer;}");

We also define the style for a second button, with all the properties of the button
we’ve defined earlier, but with a different color. This will be the style for the off

button.

client.println(".button2 {background-color:

#555555; }</style></head>");

Setting the Web Page First Heading

In the next line you can set the first heading of your web page. Here we have

‘ESP32 Web Server”, but you can change this text to whatever you like.

80/137

LAFVIN

// Web Page Heading

client.println("<h1>ESP32 Web Server</hl>");

Displaying the Buttons and Corresponding State

Then, you write a paragraph to display the [€lgd[®FA4s current state. As you can see
we use the output26State variable, so that the state updates instantly when this

variable changes.

client.println("<p>GPIO 26 - State " + output26State + "</p>");

Then, we display the on or the off button, depending on the current state of the
GPIO. If the current state of the GPIO is off, we show the ON button, if not, we
display the OFF button.

if (output26State=="off") {

client.println("<p><button

class=\"button\">0ON</button></p>");
else

client.println("<p><button class=\"button

button2\">0FF</button></p>");

}

We use the same procedure for [€](OR44.

81/137

LAFVIN

Closing the Connection

Finally, when the response ends, we clear the header variable, and stop the

connection with the client with client.stop().

// Clear the header variable
header = "";
// Close the connection

client.stop();

Wrapping Up

In this tutorial we’ve shown you how to build a web server with the ESP32. We've
shown you a simple example that controls two LEDs, but the idea is to replace

those LEDs with a relay, or any other output you want to control.

82/137

LAFVIN
Project 6 RGB LED Web Server

In this project we’ll show you how to remotely control an RGB LED with an ESP32

board using a web server with a color picker.

Project Overview

Before getting started, let's see how this project works:

-
' ' http://192.168.1.85/2r0g50b255&

HTTP request

.

PWM signals

——————
-+

The ESP32 web server displays a color picker.

When you chose a color, your browser makes a request on a URL that

contains the R, G, and B parameters of the selected color.

Your ESP32 receives the request and splits the value for each color
parameter.

Then, it sends a PWM signal with the corresponding value to the GPIOs
that are controlling the RGB LED.

83/137

l_ A F ﬁri{r 1) A

How do RGB LEDs work?

In a common cathode RGB LED, all three LEDs share a negative connection

(cathode).All included in the kit are common-cathode RGB.

Common Cathode (-)

R
’\L Red Anode @
g Common Cathode ©
H (-) Green Anode @
N Blue Anode @
B
<8

How to create different colors?

With an RGB LED you can, of course, produce red, green, and blue light, and by

configuring the intensity of each LED, you can produce other colors as well.

For example, to produce purely blue light, you’'d set the blue LED to the highest
intensity and the green and red LEDs to the lowest intensity. For a white light,

you'd set all three LEDs to the highest intensity.
Mixing colors

To produce other colors, you can combine the three colors in different intensities.

To adjust the intensity of each LED you can use a PWM signal.

84/137

LAFVIN

Because the LEDs are very close to each other, our eyes see the result of the

combination of colors, rather than the three colors individually.

To have an idea on how to combine the colors, take a look at the following chart.
This is the simplest color mixing chart, but gives you an idea how it works and

how to produce different colors.

Parts Required

For this project you need the following parts:

ESP32 DEVKIT V1 Board
RGB LED

3x 220 ohm resistors
Jumper wires
Breadboard

85/137

l_ A F F'."” N

Schematic

° ° ° e o o © 0 o
° ° ° ® o o © 0 o
° ° ° e o o 0o 0 o
® [] ® 6 6 06 0 O e 6 6 o o o
° D26 D25D33 D32 D35D34 VN VP EN e o0 0 0 o
ARRRRARARARARARRR

1=

[| =)

[— 5 o o ®

=s S g

u — @

« - &

[

DD15 D2 D4 RX2T.
o0 00

><

2

Code

We’ll program the ESP32 using Arduino IDE, so make sure you have the ESP32
add-on installed before proceeding:(If you have already done this step, you can
skip to the next step.)

= Installing ESP32 Add-on in Arduino IDE

86/137

LAFVIN

After assembling the circuit, Open the code
Project 6 RGB_LED_Web_Server.ino in arduino IDE.

Before uploading the code, don’t forget to insert your network credentials so that

the ESP can connect to your local network.

const char* ssid = "REPLACE_WITH_YOUR_SSID";

const char* password = "REPLACE_WITH YOUR_SSID";

How the code works

The ESP32 sketch uses the WiFi.h library.
#include <WiFi.h>

The following lines define string variables to hold the R, G, and B parameters from

the request.

String redString = "0";

String greenString = "0";

String blueString = "0";

The next four variables are used to decode the HTTP request later on.
int posl = @;int pos2 = 0;int pos3 = 0;int pos4 = 0;

Create three variables for the GPI1Os that will control the strip R, G, and B
parameters. In this case we’re using [Elx[ONIS), [CI(OMV, and [Clx[ORE.

87/137

l_ A F T. | E'--x

const int redPin = 13; const int greenPin = 12; const int bluePin

= 14;

These GPIOs need to output PWM signals, so we need to configure the PWM
properties first. Set the PWM signal frequency to 5000 Hz. Then, associate a

PWM channel for each color

const int freq = 5000;const int redChannel = 9;const int greenChannel

= 1;const int blueChannel = 2;

And finally, set the resolution of the PWM channels to 8-bit
const int resolution = 8;

In the setup(), assign the PWM properties to the PWM channels

ledcSetup(redChannel, freq, resolution);ledcSetup(greenChannel,

freq, resolution);ledcSetup(blueChannel, freq, resolution);
Attach the PWM channels to the corresponding GPIOs

ledcAttachPin(redPin, redChannel);ledcAttachPin(greenPin,

greenChannel) ;ledcAttachPin(bluePin, blueChannel);

The following code section displays the color picker in your web page and makes

a request based on the color you've picked.

client.println("<!DOCTYPE html><html>");

88/137

LAFVIN

client.println("<head><meta name=\"viewport\"

content=\"width=device-width, initial-scale=1\">");
client.println("<link rel=\"icon\" href=\"data:,\">");

client.println("<link rel=\"stylesheet\"
href=\"https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/boo

tstrap.min.css\">");

client.println("<script
src=\"https://cdnjs.cloudflare.com/ajax/libs/jscolor/2.0.4/jscolo

r.min.js\"></script>");

client.println("</head><body><div class=\"container\"><div

class=\"row\"><h1>ESP Color Picker</hl></div>");

client.println("<a class=\"btn btn-primary btn-1g\" href=\"#\"

id=\"change_color\" role=\"button\">Change Color ");

client.println("<input class=\"jscolor

{onFineChange: 'update(this)'}\" id=\"rgb\"></div>");

client.println("<script>function update(picker)
{document.getElementById('rgb').innerHTML =

Math.round(picker.rgb[0]) + ', ' + Math.round(picker.rgb[1]) + ',

" + Math.round(picker.rgb[2]);");

89/137

LAFVIN

client.println("document.getElementById(\"change color\").href=\"?
r\" + Math.round(picker.rgb[@]) + \"g\" + Math.round(picker.rgb[1])
+ \"b\" + Math.round(picker.rgb[2]) +

\"&\"; }</script></body></html>");// The HTTP response ends with

another blank line

client.println();
When you pick a color, you receive a request with the following format.

/?r201g32b255&

So, we need to split this string to get the R, G, and B parameters. The parameters
are saved in redString, greenString, and blueString variables and can have

values between 0 and 255.

posl = header.indexOf('r');
pos2 = header.indexOf('g");
pos3 = header.indexOf('b");
pos4 = header.indexOf('&");

redString = header.substring(posl+l, pos2);

greenString = header.substring(pos2+1, pos3);

90/137

LAFVIN

blueString = header.substring(pos3+1, pos4);

To control the strip with the ESP32, use the ledcWrite() function to generate PWM

signals with the values decoded from the HTTP request.

ledcWrite(redChannel, redString.tolInt());ledcWrite(greenChannel,

greenString.toInt());ledcWrite(blueChannel, blueString.toInt());

Note: learn more about PWM with ESP32: Project 3 ESP32 PWM(Analog

To control the strip with the ESP8266, we just need to use
the analogWrite() function to generate PWM signals with the values decoded from
the HTPP request.

analogWrite(redPin, redString.toInt());
analogWrite(greenPin, greenString.toInt());

analogWrite(bluePin, blueString.toInt())

Because we get the values in a string variable, we need to convert them to

integers using the tolnt() method.

Demonstration

After inserting your network credentials, select the right board and COM port and

upload the code to your ESP32.Upload code reference steps.

91/137

LAFVIN

After uploading, open the Serial Monitor at a baud rate of 115200 and press the
ESP Enable/Reset button. You should get the board IP address.

Note: Your browser and ESP32 should be connected to the same LAN.

& coms - O X

| sena |
14:39:30.441 -> ets Jul 29 2019 12:21:46 2
14:39:30.441 >
14:39:30.441 -> rst:0xl (POWERON RESET),boot:0x13 (SPI_FAST FLASH
14:39:30.441 -> configsip: 0, SPIWP:(Oxee
14:39:30.441 -> clk drv:0x00,g drv:0x00,d drv:0x00,cs0 drv:0x00,hc
14:39:30.441 -> mode:DIO, clock diw:1
14:39:30.441 -> load:0x3fff0030,1en:1184
14:39:30.441 -> 1load:0x40078000,1en:13160
14:39:30.441 -> load:0x40080400,1en:3036
14:39:30.441 -> entry 0x400805e4
14:39:31.825 —> Connecting to WiFi..
14:39:31.825 —>] 192.168.145.181 IP address

W

< >
[+] futoseroll [] Shew timestamp H-ewllﬂe— | llEZU-Uhaud V | Clea.r output |

Open your browser and insert the ESP |IP address. Now, use the color picker to
choose a color for the RGB LED.

Then, you need to press the “Change Color” button for the color to take effect.

92/137

LAFVIN

To turn off the RGB LED , select the black color.

The strongest colors (at the top of the color picker), are the ones that will produce

better results.

93/137

LAFVIN

Project 7 ESP32 Relay Web Server

Using a relay with the ESP32 is a great way to control AC household appliances
remotely. This tutorial explains how to control a relay module with the ESP32.
We'll take a look at how a relay module works, how to connect the relay to the

ESP32 and build a web server to control a relay remotely.

Introducing Relays

A relay is an electrically operated switch and like any other switch, it that can be
turned on or off, letting the current go through or not. It can be controlled with low
voltages, like the 3.3V provided by the ESP32 GPIOs and allows us to control
high voltages like 12V, 24V or mains voltage (230V in Europe and 120V in the
us).

HL-52S V1.0
NO E—
—
NC E—
NO E—
RandomNerd Tutc
s—
NC E—

@ 2 relay module

On the left side, there are two sets of three sockets to connect high voltages, and

the pins on the right side (low-voltage) connect to the ESP32 GPIOs.

94/137

LAFVIN

Mains Voltage Connections

The relay module shown in the previous photo has two connectors, each with
three sockets: common ([§8]¥]), Normally Closed (N[&), and Normally Open (1 12).

= COM: connect the current you want to control (mains voltage).

= NC (Normally Closed): the normally closed configuration is used when you
want the relay to be closed by default. The NC are COM pins are connected,
meaning the current is flowing unless you send a signal from the ESP32 to
the relay module to open the circuit and stop the current flow.

= NO (Normally Open): the normally open configuration works the other way
around: there is no connection between the NO and COM pins, so the circuit

is broken unless you send a signal from the ESP32 to close the circuit.

95/137

LAFVIN

Control Pins

s SONGLE

— :

| 10A 250VAG 10A 125VAC | *j
' 10A 30VDC 10A 28VDC &

| SRD-05VDC-SL-C °

-

Gnd fnl in?‘Ucc

Gnd

SEDe ®
| SRD-05VDC-SL-C| «*

=

e e R R)
2 relay module -

The low-voltage side has a set of four pins and a set of three pins. The first set
consists of J{&® and to power up the module, and input 1 (INEl) and input 2

(IN¥4) to control the bottom and top relays, respectively.

If your relay module only has one channel, you'll have just one IN pin. If you have

four channels, you’ll have four IN pins, and so on.

The signal you send to the IN pins, determines whether the relay is active or not.

The relay is triggered when the input goes below about 2V. This means that you'll

have the following scenarios:

= Normally Closed configuration (NC):
HIGH signal — current is flowing
LOW signal — current is not flowing

= Normally Open configuration (NO):
HIGH signal — current is not flowing

LOW signal — current in flowing

96/137

LAFVIN

You should use a normally closed configuration when the current should be

flowing most of the times, and you only want to stop it occasionally.

Use a normally open configuration when you want the current to flow occasionally

(for example, turn on a lamp occasionally).

Power Supply Selection

The second set of pins consists of [ENIY), Y&8, and [[BEVEE pins.
The EIpRV/818 pin powers the electromagnet of the relay. Notice that the module

has a jumper cap connecting the VCC and JD-VCC pins; the one shown here is

yellow, but yours may be a different color.

With the jumper cap on, the and [[BEV/e]@ pins are connected. That means
the relay electromagnet is directly powered from the ESP32 power pin, so the

relay module and the ESP32 circuits are not physically isolated from each other.

97/137

l_ A F ﬁri{r _: 'y

Without the jumper cap, you need to provide an independent power source to
power up the relay’s electromagnet through the pin. That configuration
physically isolates the relays from the ESP32 with the module’s built-in

optocoupler, which prevents damage to the ESP32 in case of electrical spikes.

Schematic

—
 m—

ainpop Apjay gz

L oF B N
@ oce VGG GHD GNDYINT INZ oo @

h-u".iv“'."".
VIN GND D13 Dt2 D4 D27 026 D25 D33 DX DISDAA YN VP EN

REREAARARNARSESEE

.
—
4]
oo
=

LLLLLLLLL L L]

D18 18 D21 RO THO D22 D23
LN N R

£

.ﬁl EN O EN BE W

98/137

LAFVIN

arning: Use of high voltage power supplies may cause serious injury.
Therefore, 5mm LEDs are used instead of high supply voltage bulbs in the

experiment. If you’re not familiar with mains voltage ask someone who is to help

you out. While programming the ESP or wiring your circuit make sure everything

is disconnected from mains voltage.

9|INpon Abjay ¢z

AN9 O0A J9A-ar

2
=
&
<
8
]
[.\‘ { o o o o
[{ (] e o o o
220 Q
® © ¢ ¢ o o o o ® © ¢ o o o ¢
e 6 6 o o o o o e 6 & o o o o
® ¢ ¢ ¢ o o o o ® © ¢ o o o ¢
o 6 6 o o o o o e 6 o o o o ¢
® © ¢ o o o o o ® © ¢ o o o ¢
o 6 o o o ® 6 6 0 6 o o o o o o o o o O e 6 & o o o ¢
o & o o o l o & o o ® © & o o o o o o O o 6 o o o o ¢
o 6 o o o e & o o ® & 6 o o o o o o o o o A W W WS W v o
e 6 o o o [] ® 6 06 ©°’ o O ® © ¢ o o o ¢
® 6 o o o VIN DZ 2035D34VN VP EN e o ® © 6 o o o o
. ARARARRRARAARAAAR
|] i m
] 9
] » 3
] 3 o o o
- g o o o
] 9
]

= | CLLLLLL L]]
3V3GND D15 D2 D4 RX2TX2 DS D18 D19 D21 RX0TX0 D22 D23

99/137

LAFVIN

Installing the Library for ESP32

To build this web server, we use the ESPAsyncWebServer library and AsyncTCP
Library.

Installing the ESPAsyncWebServer library

Follow the next steps to install the ESPAsyncWebServer library:

1. Click here to download the ESPAsyncWebServer library. You should have
a .zip folder in your Downloads folder

2. Unzip the .zip folder and you should
get ESPAsyncWebServer-master folder

3. Rename your folder
from ESPAsyre\WebServer-master to ESPAsyncWebServer

4. Move the ESPAsyncWebServer folder to your Arduino IDE installation

libraries folder
Alternatively, in your Arduino IDE, you can go to Sketch > Include

Library > Add .ZIP library... and select the library you've just downloaded.
Installing the AsyncTCP Library for ESP32

The ESPAsyncWebServer library requires the AsyncTCP library to work. Follow

the next steps to install that library:

1. Click here to download the AsyncTCP library. You should have a .zip folder
in your Downloads folder

2. Unzip the .zip folder and you should get AsyncTCP-master folder

1. Rename your folder from AsyneFCP-master to AsyncTCP

3. Move the AsyncTCP folder to your Arduino IDE installation libraries folder

100/137

https://github.com/me-no-dev/ESPAsyncWebServer
https://github.com/me-no-dev/ESPAsyncWebServer/archive/master.zip
https://github.com/me-no-dev/ESPAsyncWebServer
https://github.com/me-no-dev/AsyncTCP
https://github.com/me-no-dev/AsyncTCP/archive/master.zip

LAFVIN

4. Finally, re-open your Arduino IDE

Alternatively, in your Arduino IDE, you can go to Sketch > Include

Library > Add .ZIP library... and select the library you’ve just downloaded.

Code

We’ll program the ESP32 using Arduino IDE, so make sure you have the ESP32
add-on installed before proceeding:(If you have already done this step, you can
skip to the next step.)

= Installing ESP32 Add-on in Arduino IDE
After installing the required libraries, Open the code
Project 7 ESP32 Relay Web_Server.ino in arduino IDE.

Before uploading the code, don'’t forget to insert your network credentials so that

the ESP can connect to your local network.

const char* ssid = "REPLACE_WITH_YOUR _SSID";

const char* password = "REPLACE_WITH_YOUR_SSID";

101/137

LAFVIN

Demonstration

After making the necessary changes, upload the code to your ESP32.Upload

code reference steps.

Open the Serial Monitor at a baud rate of 115200 and press the ESP32 EN button
to get its IP address.Then, open a browser in your local network and type the

ESP32 IP address to get access to the web server.

& coms — O ®

IT Send

14:39:30.441 -> ets Jul 29 2019 12:21:46 2
14:39:30.441 ->

14:39:30.441 -> rst:0xl (POWERON RESET),boot:0x13 (SPI_ FAST FLASH
14:39:30.441 -> configsip: 0, SPIWP:(Oxee

14:39:30.441 -> clk drv:0x00,g drv:0x00,d drv:0x00,cs0 drv:0x00,hc
14:39:30.441 -> mode:DIO, clock diwv:1

14:39:30.441 -> load:0x3fff0030,1len:-1184

14:39:30.441 -> 1o0ad:0x40078000,1len:13160

14:39:30.441 -> load:0x40080400,1len:3036

14:39:30.441 -> entry 0x400805e=4

14:29:31.825 -> Connecting to WiFi..

14:39:31.825 —->»]192.1658.145.181 IP address

L
£ >
Autoscroll EShow timestamp :iew.il:i..ne | 115200 :t-laué v Clear uu‘t;p_ut

Note: Your browser and ESP32 should be connected to the same LAN.

You should get something as follows with as two buttons as the number of relays

you’ve defined in your code.

102/137

LAFVIN

103/137

LAEV

Project_8 Output_State Synchronization_

Web_ Server
This Project shows how to control the ESP32 or ESP8266 outputs using a web
server and a physical button simultaneously. The output state is updated on the

web page whether it is changed via physical button or web server.

Project Overview

Let’s take a quick look at how the project works.

" Updateweb page .\

Physical
pushbutton

ESP Web Server

Dt - M0 1 - Slale O

ESP32/ESP8266

= The ESP32 or ESP8266 hosts a web server that allows you to control the

state of an output;

104/137

LAFVIN

= The current output state is displayed on the web server;
= The ESP is also connected to a physical pushbutton that controls the same
output;
= If you change the output state using the physical puhsbutton, its current
state is also updated on the web server.
In summary, this project allows you to control the same output using a web server
and a push button simultaneously. Whenever the output state changes, the web

server is updated.

Parts Required

Here’s a list of the parts to you need to build the circuit:

ESP32 DEVKIT V1 Board
5 mm LED

2200hm resistor
Pushbutton

10k Ohm resistor
Breadboard

Jumper wires

105/137

Schematic

Button

VIN GND D13 D12 D14 D27 D26 D25D33 D32 D35D34 VN VP EN

3

e

L]

L]

s3

¢E-NOOUM-d

3GNDD15 D2 D4 RX2TX2 DS D18 D19 D21 RXO0 TX0 D22 D23

106/137

LAFVIN

Installing the Library for ESP32

To build this web server, we use the ESPAsyncWebServer library and AsyncTCP

HlJelgA(If you have already done this step, you can skip to the next step.
Installing the ESPAsyncWebServer library
Follow the next steps to install the ESPAsyncWebServer library:

1.Click here to download the ESPAsyncWebServer library. You should have
a .zip folder in your Downloads folder
2.Unzip the .zip folder and you should get ESPAsyncWebServer-master folder

3.Rename your folder

from ESPAsyreWebServer-master to ESPAsyncWebServer
4 Move the ESPAsyncWebServer folder to your Arduino IDE installation

libraries folder
Alternatively, in your Arduino IDE, you can go to Sketch > Include

Library > Add .ZIP library... and select the library you’ve just downloaded.

Installing the AsyncTCP Library for ESP32

The ESPAsyncWebServer library requires the AsyncTCP library to work. Follow

the next steps to install that library:

1.Click here to download the AsyncTCP library. You should have a .zip folder in

your Downloads folder
2.Unzip the .zip folder and you should get AsyncTCP-master folder

3.Rename your folder from AsyreTFGP-master to AsyncTCP
4.Move the AsyncTCP folder to your Arduino IDE installation libraries folder

5.Finally, re-open your Arduino IDE
Alternatively, in your Arduino IDE, you can go to Sketch > Include

Library > Add .ZIP library... and select the library you've just downloaded.

107/137

https://github.com/me-no-dev/ESPAsyncWebServer
https://github.com/me-no-dev/ESPAsyncWebServer/archive/master.zip
https://github.com/me-no-dev/ESPAsyncWebServer
https://github.com/me-no-dev/AsyncTCP
https://github.com/me-no-dev/AsyncTCP/archive/master.zip

LAFVIN

Code

We’'ll program the ESP32 using Arduino IDE, so make sure you have the ESP32
add-on installed before proceeding:(If you have already done this step, you can
skip to the next step.)

= Installing ESP32 Add-on in Arduino IDE

After installing the required libraries, Open the code

Project_8 Output_State_Synchronization_Web_Server.ino in arduino IDE.

Before uploading the code, don'’t forget to insert your network credentials so that

the ESP can connect to your local network.

const char* ssid = "REPLACE_WITH_YOUR_SSID";

const char* password = "REPLACE_WITH YOUR_SSID";

How the Code Works

Button State and Output State

The ledState variable holds the LED output state. For default, when the web

server starts, it is LOW.

int ledState = LOW; // the current state of the output pin

108/137

LAFVIN

The buttonState and lastButtonState are used to detect whether the pushbutton

was pressed or not.

int buttonState; // the current reading from the input pin

int lastButtonState = HIGH; // the previous reading from the input

pin

Button (web server)

We didn’t include the HTML to create the button on the the index_html variable.
That's because we want to be able to change it depending on the current LED

state that can also be changed with the pushbutton.

So, we’ve create a placeholder for the button %BUTTONPLACEHOLDER% that
will be replaced with HTML text to create the button later on the code (this is done

in the processor() function).

<h2>ESP Web Server</h2>

%BUTTONPLACEHOLDER%

processor()

The processor() function replaces any placeholders on the HTML text with actual
values. First, it checks whether the HTML texts contains any
placeholders %BUTTONPLACEHOLDER%.

if(var == "BUTTONPLACEHOLDER"){

109/137

LAFVIN

Then, call theoutputState() function that returns the current output state. We save

it in the outputStateValue variable.
String outputStateValue = outputState();

After that, use that value to create the HTML text to display the button with the
right state:

buttons+= "<h4>0utput - GPIO 2 - State </h4><label class=\"switch\"><input
type=\"checkbox\" onchange=\"toggleCheckbox(this)\" id=\"output\" "

+ outputStateValue + "></label>";

HTTP GET Request to Change Output State (JavaScript)

When you press the button, thetoggleCheckbox() function is called. This function

will make a request on different URLs to turn the LED on or off.

function toggleCheckbox(element) {
var xhr = new XMLHttpRequest();
if(element.checked){ xhr.open("GET", "/update?state=1", true); }
else { xhr.open("GET", "/update?state=0", true); }

xhr.send();}

To turn on the LED, it makes a request on the /update?state=1 URL.:

110/137

l_ A F T. | E'--x

if(element.checked){ xhr.open("GET", "/update?state=1", true); }

Otherwise, it makes a request on the /update?state=0 URL.

HTTP GET Request to Update State (JavaScript)

To keep the output state updated on the web server, we call the following function

that makes a new request on the /state URL every second.

setInterval(function () {
var xhttp = new XMLHttpRequest();
xhttp.onreadystatechange = function() {
if (this.readyState == 4 && this.status == 200) {
var inputChecked;
var outputStateM;

if(this.responseText == 1){

inputChecked = true;
outputStateM = "On";
}
else {

111/137

LAFVIN

false;

inputChecked

outputStateM "Off",;

document.getElementById("output”).checked = inputChecked;

document.getElementById("outputState").innerHTML =

outputStateM;

}s
xhttp.open("GET", "/state", true);

xhttp.send();}, 1000) ;

Handle Requests

Then, we need to handle what happens when the ESP32 or ESP8266 receives

requests on those URLs.

When a request is received on the root / URL, we send the HTML page as well as

the processor.

server.on("/", HTTP_GET, | |(AsyncWebServerRequest *request){

112/137

l_ A F F'."” N

request->send P(200, "text/html", index_html, processor);;});

The following lines check whether you received a request on
the /update?state=1 or /Jupdate?state=0 URL and changes
the ledState accordingly.

server.on("/update”, HTTP_GET, || (AsyncWebServerRequest *request)

{

String inputMessage;

String inputParam;

// GET inputl value on <ESP_IP>/update?state=<inputMessage>

if (request->hasParam(PARAM INPUT 1)) {
inputMessage = request->getParam(PARAM_INPUT_1)->value();
inputParam = PARAM_INPUT_1;
digitalWrite(output, inputMessage.tolnt());

ledState = !ledState;

else {

inputMessage = "No message sent”;

113/137

LAFVIN

inputParam = "none";

Serial.println(inputMessage);

request->send(200, "text/plain”, "OK");});
When a request is received on the /state URL, we send the current output state:

server.on("/state"”, HTTP_GET, | | (AsyncWebServerRequest *request) {

request->send(200, "text/plain”,

String(digitalRead(output)).c_str());});

loop()

In the loop(), we debounce the pushbutton and turn the LED on or off depending

on the value of the ledState variable.

digitalWrite(output, ledState);

Demonstration

Upload the code to your ESP32 board.Upload code reference steps.

Then, open the Serial Monitor at a baud rate of 115200. Press the on-board
EN/RST button to get is IP address.

114/137

LAFVIN

& com3 - O X

! |

Connecting to WiFi..
Connecting to WiFi..
192.168.1.76

L

Autoscroll [Show timestamp BothNL&CR I 115200 baud - I | Clear output |

Open a browser on your local network, and type the ESP IP address. You should

have access to the web server as shown below.

Note: Your browser and ESP32 should be connected to the same LAN.

115/137

LAFVIN

You can toggle the button on the web server to turn the LED on.

You can also control the same LED with the physical pushbutton. Its state will

always be updated automatically on the web server.

116/137

LAFVIN
Project 9 ESP32 DHT11 Web Server

In this project, you'll learn how to build an asynchronous ESP32 web server with

the DHT11 that displays temperature and humidity using Arduino IDE.

Prerequisites

The web server we'll build updates the readings automatically without the need to

refresh the web page.
With this project you'll learn:

= How to read temperature and humidity from DHT sensors;
= Build an asynchronous web server using the ESPAsyncWebServer library;
= Update the sensor readings automatically without the need to refresh the

web page.

Asynchronous Web Server

To build the web server we’ll use the ESPAsyncWebServer library that provides

an easy way to build an asynchronous web server. Building an asynchronous

web server has several advantages as mentioned in the library GitHub page,

such as:

= “Handle more than one connection at the same time”;

= “When you send the response, you are immediately ready to handle other
connections while the server is taking care of sending the response in the
background”;

= “Simple template processing engine to handle templates”;

117/137

https://github.com/me-no-dev/ESPAsyncWebServer
https://github.com/me-no-dev/ESPAsyncWebServer

LAFVIN

Parts Required

To complete this tutorial you need the following parts:

« ESP32 development board
« DHT11 Module
= Breadboard

= Jumper wires

Schematic

© 000000000000 00
VIN GND D13 D12 D14 D27 D26 D25 D33 D32 D35D34 VN VP EN
. . AREAREERRARRARRER

m

. g
¥

=Ill. 3 o o o o (
o

- u (,Z) o o 0o 0 1
: . :
o oo

e 6 o o o |

oo o ° e o 0 0 o

o © 6 o 6 ¢ o o o ¢ o o o |

® © 6 o ¢ ¢ o o o o o o o |

o © O o ¢ ¢ o o o o o o o |

® © ¢ o ¢ ¢ o o o o o o o |

® © O o ¢ ¢ o o o o o o o |

® © O o ¢ ¢ o o o o o o o |

® © ¢ o ¢ ¢ o o o o o o o |

® © O o ¢ ¢ o o o ¢ o o o |

e © o o o e © o o o (

e © o o o e © o o ©o (

118/137

LAFVIN

Installing Libraries
You need to install a couple of libraries for this project:

= The DHT and the Adafruit Unified Sensor Driver libraries to read from the
DHT sensor.

= ESPAsyncWebServer and Async TCP libraries to build the asynchronous
web server.

Follow the next instructions to install those libraries:

Installing the DHT Sensor Library

To read from the DHT sensor using Arduino IDE, you need to install the DHT

sensor library. Follow the next steps to install the library.

1. Click here to download the DHT Sensor library. You should have a .zip
folder in your Downloads folder

2. Unzip the .zip folder and you should get DHT-sensor-library-master folder

3. Rename your folder from BHT-senseor-library-master to DHT _sensor

4. Move the DHT_sensor folder to your Arduino IDE installation libraries folder
5. Finally, re-open your Arduino IDE
Installing the Adafruit Unified Sensor Driver

You also need to install the Adafruit Unified Sensor Driver library to work with the

DHT sensor. Follow the next steps to install the library.

1. Click here to download the Adafruit Unified Sensor library. You should
have a .zip folder in your Downloads folder

2. Unzip the .zip folder and you should get Adafruit_sensor-master folder

119/137

https://github.com/adafruit/DHT-sensor-library
https://github.com/adafruit/Adafruit_Sensor
https://github.com/me-no-dev/ESPAsyncWebServer
https://github.com/me-no-dev/AsyncTCP
https://github.com/adafruit/DHT-sensor-library
https://github.com/adafruit/DHT-sensor-library
https://github.com/adafruit/DHT-sensor-library/archive/master.zip
https://github.com/adafruit/Adafruit_Sensor
https://github.com/adafruit/Adafruit_Sensor/archive/master.zip

LAFVIN

3. Rename your folder from-Adafruit—sensor-master to Adafruit_sensor

4. Move the Adafruit_sensor folder to your Arduino IDE installation libraries

folder

5. Finally, re-open your Arduino IDE

Installing the ESPAsyncWebServer library

Follow the next steps to install the ESPAsyncWebServer library:

1. Click here to download the ESPAsyncWebServer library. You should have
a .zip folder in your Downloads folder

2. Unzip the .zip folder and you should
get ESPAsyncWebServer-master folder

3. Rename your folder

from ESPAsyreWebServer-master to ESPAsyncWebServer
4. Move the ESPAsyncWebServer folder to your Arduino IDE installation

libraries folder

Installing the Async TCP Library for ESP32

The ESPAsyncWebServer library requires the AsyncTCP library to work. Follow
the next steps to install that library:

1. Click here to download the AsyncTCP library. You should have a .zip folder

in your Downloads folder

2. Unzip the .zip folder and you should get AsyncTCP-master folder

3. Rename your folder from AsyreFGP-master to AsyncTCP

4. Move the AsyncTCP folder to your Arduino IDE installation libraries folder

120/137

https://github.com/me-no-dev/ESPAsyncWebServer
https://github.com/me-no-dev/ESPAsyncWebServer/archive/master.zip
https://github.com/me-no-dev/ESPAsyncWebServer
https://github.com/me-no-dev/AsyncTCP
https://github.com/me-no-dev/AsyncTCP/archive/master.zip

LAFVIN

5. Finally, re-open your Arduino IDE

Code

We’ll program the ESP32 using Arduino IDE, so make sure you have the ESP32
add-on installed before proceeding:(If you have already done this step, you can
skip to the next step.)

= Installing ESP32 Add-on in Arduino IDE
After installing the required libraries, Open the code
Project 9 ESP32 DHT11_Web_Server.ino in arduino IDE.

Before uploading the code, don'’t forget to insert your network credentials so that

the ESP can connect to your local network.

const char* ssid = "REPLACE_WITH_YOUR _SSID";

const char* password = "REPLACE_WITH_YOUR_SSID";

How the Code Works

In the following paragraphs we’ll explain how the code works. Keep reading if you

want to learn more or jump to the Demonstration section to see the final result.

Importing libraries

First, import the required libraries. The WiFi, ESPAsyncWebServer and the
ESPAsyncTCP are needed to build the web server. The Adafruit_Sensor and the
DHT libraries are needed to read from the DHT11 or DHT22 sensors.

#tinclude "WiFi.h"

121/137

LAFVIN

#include "ESPAsyncWebServer.h"
#include <ESPAsyncTCP.h>
#include <Adafruit_Sensor.h>

##tinclude <DHT.h>

Variables definition

Define the GPIO that the DHT data pin is connected to. In this case, it's connected

IeAGPIO 48

#define DHTPIN 4 // Digital pin connected to the DHT sensor

Then, select the DHT sensor type you’re using. In our example, we're using the
DHT22. If you're using another type, you just need to uncomment your sensor and

comment all the others.

#define DHTTYPE DHT11 // DHT 11

Instantiate a DHT object with the type and pin we’ve defined earlier.
DHT dht(DHTPIN, DHTTYPE);

Create an AsyncWebServer object on port 80.

AsyncWebServer server(80);

Read Temperature and Humidity Functions

122/137

LAFVIN

We've created two functions: one to read the temperature We’ve created two
functions: one to read the temperature (readDHT Temperature()) and the other to
read humidity (readDHTHumidity()).

String readDHTTemperature() {

// Sensor readings may also be up to 2 seconds 'old' (its a very

slow sensor)
// Read temperature as Celsius (the default)
float t = dht.readTemperature();
// Read temperature as Fahrenheit (isFahrenheit = true)
//float t = dht.readTemperature(true);
// Check if any reads failed and exit early (to try again).
if (isnan(t)) {
Serial.println("Failed to read from DHT sensor!");

return "--";

else {

Serial.println(t);

123/137

LAFVIN

return String(t);

3}

Getting sensor readings is as simple as using Getting sensor readings is as

simple as using the readTemperature() and readHumidity()methods on the dht

object.
float t = dht.readTemperature();
float h = dht.readHumidity();

We also have a condition that returns two dashes (-) in case the sensor fails to

get the readings.

if (isnan(t)) {

Serial.println("Failed to read from DHT sensor!");

return "--";}

The readings are returned as string type. To convert a float to a string, use

the String() function.

return String(t);

By default, we’re reading the temperature in Celsius degrees. To get the
temperature in Fahrenheit degrees, comment the temperature in Celsius and

uncomment the temperature in Fahrenheit, so that you have the following:

float t = dht.readTemperature();

124/137

LAFVIN

// Read temperature as Fahrenheit (isFahrenheit = true)

//float t = dht.readTemperature(true);

Upload the Code

Now, upload the code to your ESP32. Make sure you have the right board and
COM port selected.Upload code reference steps.

After uploading, open the Serial Monitor at a baud rate of 115200. Press the
ESP32 reset button. The ESP32 IP address should be printed in the serial

monitor.

&8 com4 - O

*

| []

configsip: 0, SPIWP:0Oxee

mode:DIQ, clock div:1
load:0x3£££f0018, 1en:4
load:0x3fff001c, 1en: 928
ho 0 tail 12 room 4
load:0x40078000, 1len: 9280
load:0x40080400, len: 5348
entry 0x400806858
Connecting to WiFi..
192.168.1.85'

71.80

20.70

72.00

20.70

71.40

20.70

4

clk drv:0x00,q drv:0x00,d drv:0x00,cs0 drv:0x00,hd drv:0x00,wt

>

L)

W

[] Autoscroll [_] Show timestamp ENEMinE v | | 115200 baud - | | Clear output

125/137

LAFVIN

Demonstration

Open a browser and type the ESP32 IP address. Your web server should display

the latest sensor readings.

Note: Your browser and ESP32 should be connected to the same LAN.

Notice that the temperature and humidity readings are updated automatically

without the need to refresh the web page.

126/137

LAF)
Project 10 ESP32_ OLED Display

This project shows how to use the 0.96 inch SSD1306 OLED display with ESP32
using Arduino IDE.

Introducing 0.96 inch OLED Display

The OLED display that we’ll use in this tutorial is the SSD1306 model: a

monocolor, 0.96 inch display with 128x64 pixels as shown in the following figure.

The OLED display doesn’t require backlight, which results in a very nice contrast
in dark environments. Additionally, its pixels consume energy only when they are

on, so the OLED display consumes less power when compared to other displays.

Because the OLED display uses 12C communication protocol, wiring is very

simple. You can use the following table as a reference.

127/137

https://makeradvisor.com/tools/oled-display-128x64-0-96-inch/

LAFVIN

OLED Pin

ESP32

Vin

GND

SCL

GPIO 22

SDA

Schematic

©
VIN
"
[
"
u
"
u
"
=
"
=

= ;
E § e o 0 o)
E g e o 0 o °o o
-lllllllllllllllll
3V3GNDD15 D2 D4 RX2TX2 D5 D18 D19 D21 RX0 TX0 D22 D23 YAYAVEAVA ARY
® © 6 6 6 6 6 06 06 06 0 0 0 0 O e 6 6 o o o o
e o0 0 0 0 0
o o0 0 0 00
PP es
© 0o 00600000 00 00
PPNV PeN
© 006060000000 000 0000 00
e o000 00 0 0
GND VCC SCL SDA W NN W W
e o 0 0 o)
e o 0 0 o o o

25D33 D32 D35 D34 VN VP EN
ARRARRARARRARRARE

6

S3

SN O

0.96 OLED Display

128/137

LAFVIN

Installing SSD1306 OLED Library — ESP32

There are several libraries available to control the OLED display with the ESP32.
In this tutorial we’ll use two Adafruit libraries: Adafruit SSD1306
library and Adafruit_ GFX library.

Follow the next steps to install those libraries.

1. Open your Arduino IDE and go to Sketch > Include Library > Manage

Libraries. The Library Manager should open.

2. Type “SSD1306” in the search box and install the SSD1306 library from
Adafruit.

@' Library Manager

Type Al « | Topic :AJI w .ssdl'jl]ﬁ

ACROBOTIC 55D1306 by ACROBOTIC

Library for SSD1206-powered OLED 128x64 displays! This is a library for displaying text and images in S501206-powered OLED
128x64 displays: includes support for the ESPEB2566 SoC!

Mare info

Adafruit SSD13206 by Adafruit Version 1.2.9 INSTALLED

S5D13206 oled driver library for monochrome 12864 and 128x322 displays S5013206 cled driver library for menochrome 128x64
and 128x322 displays

Mare info

Select version ~ | | Instsl

Adafruit 5501206 Wemos Mini OLED by Adafruit + mcauser

SSD1206 oled driver library for Wemos D1 Mini OLED shield This is based on the Adafruit library, with additional code added to
support the 64x48 display by mcauser.

More info

ESP3266 and ESP22 Oled Driver for SSD13206 display by Daniel Eichhorn, Fabrice Weinberg
A I2C display driver for SSD1206 oled displays connected to an ESP8266 or ESP32 A I12C display driver for 5501206 oled displays
connected to an ESPE8266 or ESP32

Close

129/137

https://github.com/adafruit/Adafruit_SSD1306
https://github.com/adafruit/Adafruit_SSD1306
https://github.com/adafruit/Adafruit-GFX-Library

LAFVIN

3. After installing the SSD1306 library from Adafruit, type “GFX” in the search box

and install the library.

€9 Library Manager >
Type Al « | Topic |Al v | [Grx

Adafruit GFX Library by Adafruit Version 1.4.12 INSTALLED

Adafruit GFX graphics core library, this is the 'core’' class that all cur other graphics libraries derive from. Install this library in
addition to the display library for your hardware.

Mare info

| Select version Instzll

Adafruit ImageReader Library &y Adafruit

Companion library for Adafruit_GFX to load images from SD card. Install this library in addition to Adafruit_GFX and the display
library for your hardware (e.g. Adafruit_ILIS=241].

More info

Adafruit NeoMatric by Adafruit

Adafruit GFX-compatible library for NeoPixel grids Adafruit GFX-compatible library for NeoPixel grids
More info

GFX4d by 4D Systems Pty Ltd

Graphics Library for the gend4-IoD by 4D Systems This is a library which enables graphics to be easily added to the gend-IoD
modules using the Arduino IDE or Workshop4 IDE. gen4-IoD is powered by the ESPE266.

Mare info b

Close

4. After installing the libraries, restart your Arduino IDE.

130/137

LAFVIN

Code

After installing the required libraries, Open the code
Project_10_ESP32_OLED_Display.ino in arduino IDE.
We’'ll program the ESP32 using Arduino IDE, so make sure you have the ESP32
add-on installed before proceeding:(If you have already done this step, you can
skip to the next step.)

= Installing ESP32 Add-on in Arduino IDE

##tinclude <Wire.h>

#include <Adafruit_GFX.h>

#include <Adafruit SSD1306.h>

#define SCREEN_WIDTH 128 // OLED display width, in pixels

#define SCREEN_HEIGHT 64 // OLED display height, in pixels

// Declaration for an SSD1306 display connected to I2C (SDA, SCL pins)

Adafruit_SSD1306 display(SCREEN_WIDTH, SCREEN_HEIGHT, &Wire,

-1);void setup() {

Serial.begin(115200);

if(!display.begin(SSD1306_ SWITCHCAPVCC, ©x3C)) { // Address ©x3D

for 128x64

131/137

LAFVIN

Serial.println(F("SSD1306 allocation failed"));

for(;;);

delay(2000);
display.clearDisplay();
display.setTextSize(2);
display.setTextColor(WHITE);
display.setCursor(e, 30);

// Display static text
display.println("LAFVIN");
display.display();

delay(100);

void loop() {

// Scroll in various directions, pausing in-between:

132/137

LAFVIN

display.startscrollright(0x00, OxOF);
delay(7000) ;

display.stopscroll();

delay(1000);
display.startscrollleft(0x00, OxOF);
delay(7000);

display.stopscroll();

delay(1000);

How the Code Works
Importing libraries

First, you need to import the necessary libraries. The Wire library to use 12C and
the Adafruit libraries to write to the display: Adafruit_GFX and Adafruit_SSD1306.

#include <Wire.h>

#include <Adafruit_ GFX.h>

133/137

LAFVIN

#include <Adafruit SSD1306.h>

Initialize the OLED display

Then, you define your OLED width and height. In this example, we’re using a
128x64 OLED display. If you're using other sizes, you can change that in the
SCREEN_WIDTH, and SCREEN_HEIGHT variables.

#define SCREEN_WIDTH 128 // OLED display width, in pixels

#define SCREEN_HEIGHT 64 // OLED display height, in pixels

Then, initialize a display object with the width and height defined earlier with 12C

communication protocol (&Wire).
Adafruit SSD1306 display(SCREEN_WIDTH, SCREEN HEIGHT, &Wire, -1);

The (-1) parameter means that your OLED display doesn’t have a RESET pin. If
your OLED display does have a RESET pin, it should be connected to a GPIO. In

that case, you should pass the GPIO number as a parameter.

In the setup(), initialize the Serial Monitor at a baud raute of 115200 for debugging

purposes.
Serial.begin(115200);
Initialize the OLED display with the begin() method as follows:

if(!display.begin(SSD1306 SWITCHCAPVCC, ©x3C)) {

134/137

LAFVIN

Serial.println("SSD1306 allocation failed");

for(;;); // Don't proceed, loop forever}

This snippet also prints a message on the Serial Monitor, in case we’re not able to

connect to the display.
Serial.println("SSD1306 allocation failed");

In case you’re using a different OLED display, you may need to change the OLED

address. In our case, the address is 0x3C.
if(!display.begin(SSD1306 SWITCHCAPVCC, ©x3C)) {

After initializing the display, add a two second delay, so that the OLED has

enough time to initialize before writing text:

delay(2000);

Clear display, set font size, color and write text

After initializing the display, clear the display buffer with
the clearDisplay() method:

display.clearDisplay();

Before writing text, you need to set the text size, color and where the text will be
displayed in the OLED.

Set the font size using the setTextSize() method:

display.setTextSize(1);

135/137

l_ A F ﬁri{r _: 'y

Set the font color with the setTextColor() method:
display.setTextColor(WHITE);

WHITE sets white font and black background.

Define the position where the text starts using the setCursor(x,y) method. In this

case, we’re setting the text to start at the (0,0) coordinates — at the top left corner.
display.setCursor(0,0);

Finally, you can send the text to the display using the println() method, as follows:
display.println("Hello, world!");

Then, you need to call the display() method to actually display the text on the

screen.
display.display();

The Adafruit OLED library provides useful methods to easily scroll text.

startscrollright(0x00, 0xOF): scroll text from left to right
startscrollleft(0x00, 0xOF): scroll text from right to left

startscrolldiagright(0x00, 0x07): scroll text from left bottom corner to right

upper corner

startscrolldiagleft(0x00, 0x07): scroll text from right bottom corner to left

upper corner

Upload the Code

Now, upload the code to your ESP32.Upload code reference steps.

136/137

LAFVIN

After uploading the code, the OLED will display scrolling text.

(o o pia

e
L A A

3 L 4 s & B e i
. SAEeEEE 06 T4 OG0T ORT N B UN W [N

-—
e

)
L

Ll

137/137

	Packing List
	ESP32 Introduction
	ESP32 Specifications
	ESP32 Development Boards
	Specifications – ESP32 DEVKIT V1
	ESP32 Pinout
	SPI flash integrated on the ESP-WROOM-32
	Capacitive touch GPIOs
	Analog to Digital Converter (ADC)
	Digital to Analog Converter (DAC)
	RTC GPIOs
	PWM
	I2C
	SPI
	Interrupts
	Strapping Pins
	Pins HIGH at Boot
	Enable (EN)
	GPIO current drawn
	ESP32 Built-In Hall Effect Sensor

	ESP32 Arduino IDE
	Prerequisites: Arduino IDE Installed
	Installing ESP32 Add-on in Arduino IDE
	Upload Test Code
	Troubleshooting

	Project 1 ESP32 Inputs Outputs
	Prerequisites
	ESP32 Control Digital Outputs
	ESP32 Read Digital Inputs
	Project Example

	Parts Required
	Schematic Diagram
	Code
	How the Code Works
	Uploading the Code

	Demonstration

	Project 2 ESP32 Analog Inputs
	Analog Inputs (ADC)
	analogRead() Function

	Parts Required
	Schematic
	Code
	Testing the Example

	Project 3 ESP32 PWM(Analog Output)
	ESP32 LED PWM Controller
	Parts Required
	Schematic
	Code
	Testing the Example

	Project 4 ESP32 PIR Motion Sensor
	How HC-SR501 Motion Sensor Works
	Introducing Timers
	Parts Required
	Code
	Demonstration

	Project 5 ESP32 Switch Web Server
	Project Overview
	Parts Required
	Schematic
	Code
	Setting Your Network Credentials
	Uploading the Code
	Finding the ESP IP Address
	Accessing the Web Server

	Demonstration
	How the Code Works

	Wrapping Up

	Project 6 RGB LED Web Server
	Project Overview
	How do RGB LEDs work?
	Parts Required
	Schematic
	Code
	Demonstration

	Project 7 ESP32 Relay Web Server
	Introducing Relays
	Schematic
	Installing the Library for ESP32
	Code
	Demonstration

	Project_8_Output_State_Synchronization_Web_Server
	Project Overview
	Parts Required
	Schematic
	Installing the Library for ESP32
	Code
	How the Code Works
	Button State and Output State
	Button (web server)
	processor()
	HTTP GET Request to Change Output State (JavaScrip
	HTTP GET Request to Update State (JavaScript)
	Handle Requests
	loop()

	Demonstration

	Project 9 ESP32 DHT11 Web Server
	Prerequisites
	Asynchronous Web Server

	Parts Required
	Schematic
	Installing Libraries
	Installing the DHT Sensor Library
	Installing the Adafruit Unified Sensor Driver
	Installing the ESPAsyncWebServer library
	Installing the Async TCP Library for ESP32

	Code
	How the Code Works
	Importing libraries
	Variables definition
	Read Temperature and Humidity Functions

	Upload the Code

	Demonstration

	Project_10_ESP32_OLED_Display
	Introducing 0.96 inch OLED Display
	Schematic
	Installing SSD1306 OLED Library – ESP32
	Code
	How the Code Works
	Importing libraries
	Initialize the OLED display
	Clear display, set font size, color and write text

	Upload the Code

