[cpp] Update weighted graph
+ totalWeight is now tracked for BFS & DFS traversals + Refactor graph search info structs
This commit is contained in:
parent
4b47630548
commit
ca11b7b58c
|
@ -63,8 +63,8 @@ enum Color {
|
|||
Black
|
||||
};
|
||||
|
||||
// Information used in all searches
|
||||
struct SearchInfo {
|
||||
// Information used in all searches tracked for each node
|
||||
struct NodeInfo {
|
||||
// Coloring of the nodes is used in both DFS and BFS
|
||||
Color discovered = White;
|
||||
};
|
||||
|
@ -73,8 +73,8 @@ struct SearchInfo {
|
|||
/******************************************************************************/
|
||||
// BFS search information struct
|
||||
|
||||
// Information that is only used in BFS
|
||||
struct BFS : SearchInfo {
|
||||
// Node information that is only used in BFS
|
||||
struct BFS : NodeInfo {
|
||||
// Used to represent distance from start node
|
||||
int distance = 0;
|
||||
// Used to represent the parent node that discovered this node
|
||||
|
@ -90,8 +90,8 @@ using InfoBFS = std::unordered_map<int, struct BFS>;
|
|||
/******************************************************************************/
|
||||
// DFS search information struct
|
||||
|
||||
// Information that is only used in DFS
|
||||
struct DFS : SearchInfo {
|
||||
// Node information that is only used in DFS
|
||||
struct DFS : NodeInfo {
|
||||
// Create a pair to track discovery / finish time
|
||||
// + Discovery time is the iteration the node is first discovered
|
||||
// + Finish time is the iteration the node has been checked completely
|
||||
|
@ -119,7 +119,7 @@ public:
|
|||
// An alternate DFS that checks each node of the graph beginning at startNode
|
||||
InfoDFS DFS(const Node &startNode) const;
|
||||
// Visit function is used in both versions of DFS
|
||||
void DFSVisit(int &time, const Node& startNode, InfoDFS &searchInfo) const;
|
||||
void DFSVisit(int &time, const Node& startNode, InfoDFS &dfs) const;
|
||||
// Topological sort, using DFS
|
||||
std::vector<Node> TopologicalSort(const Node &startNode) const;
|
||||
|
||||
|
|
|
@ -79,8 +79,8 @@ enum Color {
|
|||
Black
|
||||
};
|
||||
|
||||
// Information used in all searches
|
||||
struct SearchInfo {
|
||||
// Information used in all searches tracked for each node
|
||||
struct NodeInfo {
|
||||
// Coloring of the nodes is used in both DFS and BFS
|
||||
Color discovered = White;
|
||||
};
|
||||
|
@ -89,9 +89,9 @@ struct SearchInfo {
|
|||
/******************************************************************************/
|
||||
// BFS search information struct
|
||||
|
||||
// Information that is only used in BFS
|
||||
// Node information that is only used in BFS
|
||||
template <typename T>
|
||||
struct BFS : SearchInfo {
|
||||
struct BFS : NodeInfo {
|
||||
// Used to represent distance from start node
|
||||
int distance = 0;
|
||||
// Used to represent the parent node that discovered this node
|
||||
|
@ -107,8 +107,8 @@ template <typename T> using InfoBFS = std::unordered_map<T, struct BFS<T>>;
|
|||
/******************************************************************************/
|
||||
// DFS search information struct
|
||||
|
||||
// Information that is only used in DFS
|
||||
struct DFS : SearchInfo {
|
||||
// Node information that is only used in DFS
|
||||
struct DFS : NodeInfo {
|
||||
// Create a pair to track discovery / finish time
|
||||
// + Discovery time is the iteration the node is first discovered
|
||||
// + Finish time is the iteration the node has been checked completely
|
||||
|
@ -125,7 +125,7 @@ template <typename T> using InfoDFS = std::unordered_map<T, struct DFS>;
|
|||
// Edges stored as multimap<weight, pair<nodeA.data_, nodeB.data_>>
|
||||
template <typename T> using Edges = std::multimap<int, std::pair<T, T>>;
|
||||
|
||||
struct MST : SearchInfo {
|
||||
struct MST : NodeInfo {
|
||||
int32_t parent = INT32_MIN;
|
||||
int rank = 0;
|
||||
};
|
||||
|
|
|
@ -156,11 +156,19 @@ int main (const int argc, const char * argv[])
|
|||
{9, {{3, 2}, {7, 6}}}
|
||||
}
|
||||
);
|
||||
std::cout << "\nChecking weight traversing graph from node 1 using DFS...\n";
|
||||
InfoDFS resultDFS = graphMST.DFS(graphMST.GetNodeCopy(1));
|
||||
std::cout << "DFS total weight traversed: " << resultDFS.totalWeight << std::endl;
|
||||
|
||||
std::cout << "\nChecking weight traversing graph from node 1 using BFS...\n";
|
||||
InfoBFS resultBFS = graphMST.BFS(graphMST.GetNodeCopy(1));
|
||||
std::cout << "BFS total weight traversed: " << resultBFS.totalWeight << std::endl;
|
||||
|
||||
InfoMST resultMST = graphMST.KruskalMST();
|
||||
std::cout << "Finding MST using Kruskal's...\n\nMST result: \n";
|
||||
std::cout << "\n\nFinding MST using Kruskal's...\n\nMST result: \n";
|
||||
for (const auto &edge : resultMST.edgesMST) {
|
||||
std::cout << "Connected nodes: " << edge.second.first << "->"
|
||||
<< edge.second.second << " with weight of " << edge.first << "\n";
|
||||
}
|
||||
std::cout << "Total MST weight: " << resultMST.weightMST << std::endl;
|
||||
std::cout << "Total MST weight: " << resultMST.totalWeight << std::endl;
|
||||
}
|
||||
|
|
|
@ -14,13 +14,13 @@
|
|||
InfoBFS Graph::BFS(const Node& startNode) const
|
||||
{
|
||||
// Create local object to track the information gathered during traversal
|
||||
InfoBFS searchInfo;
|
||||
InfoBFS bfs;
|
||||
|
||||
// Create a queue to visit discovered nodes in FIFO order
|
||||
std::queue<const Node *> visitQueue;
|
||||
|
||||
// Mark the startNode as in progress until we finish checking adjacent nodes
|
||||
searchInfo[startNode.number].discovered = Gray;
|
||||
bfs.nodeInfo[startNode.number].discovered = Gray;
|
||||
|
||||
// Visit the startNode
|
||||
visitQueue.push(&startNode);
|
||||
|
@ -31,17 +31,17 @@ InfoBFS Graph::BFS(const Node& startNode) const
|
|||
const Node * thisNode = visitQueue.front();
|
||||
visitQueue.pop();
|
||||
std::cout << "Visiting node " << thisNode->number << std::endl;
|
||||
|
||||
// Check if we have already discovered all the adjacentNodes to thisNode
|
||||
for (const auto &adjacent : thisNode->adjacent) {
|
||||
if (searchInfo[adjacent.first].discovered == White) {
|
||||
if (bfs.nodeInfo[adjacent.first].discovered == White) {
|
||||
std::cout << "Found undiscovered adjacentNode: " << adjacent.first
|
||||
<< "\n";
|
||||
bfs.totalWeight += adjacent.second;
|
||||
// Mark the adjacent node as in progress
|
||||
searchInfo[adjacent.first].discovered = Gray;
|
||||
searchInfo[adjacent.first].distance =
|
||||
searchInfo[thisNode->number].distance + 1;
|
||||
searchInfo[adjacent.first].predecessor =
|
||||
bfs.nodeInfo[adjacent.first].discovered = Gray;
|
||||
bfs.nodeInfo[adjacent.first].distance =
|
||||
bfs.nodeInfo[thisNode->number].distance + 1;
|
||||
bfs.nodeInfo[adjacent.first].predecessor =
|
||||
&GetNode(thisNode->number);
|
||||
|
||||
// Add the discovered node the the visitQueue
|
||||
|
@ -49,11 +49,11 @@ InfoBFS Graph::BFS(const Node& startNode) const
|
|||
}
|
||||
}
|
||||
// We are finished with this node and the adjacent nodes; Mark it discovered
|
||||
searchInfo[thisNode->number].discovered = Black;
|
||||
bfs.nodeInfo[thisNode->number].discovered = Black;
|
||||
}
|
||||
|
||||
// Return the information gathered from this search, JIC caller needs it
|
||||
return searchInfo;
|
||||
return bfs;
|
||||
}
|
||||
|
||||
std::deque<Node> Graph::PathBFS(const Node &start, const Node &finish) const
|
||||
|
@ -62,8 +62,8 @@ std::deque<Node> Graph::PathBFS(const Node &start, const Node &finish) const
|
|||
// + If the caller modifies these, it will not impact the graph's data
|
||||
std::deque<Node> path;
|
||||
|
||||
InfoBFS searchInfo = BFS(start);
|
||||
const Node * next = searchInfo[finish.number].predecessor;
|
||||
InfoBFS bfs = BFS(start);
|
||||
const Node * next = bfs.nodeInfo[finish.number].predecessor;
|
||||
bool isValid = false;
|
||||
do {
|
||||
// If we have reached the start node, we have found a valid path
|
||||
|
@ -74,7 +74,7 @@ std::deque<Node> Graph::PathBFS(const Node &start, const Node &finish) const
|
|||
path.emplace_front(*next);
|
||||
|
||||
// Move to the next node
|
||||
next = searchInfo[next->number].predecessor;
|
||||
next = bfs.nodeInfo[next->number].predecessor;
|
||||
} while (next != nullptr);
|
||||
// Use emplace_back to call Node copy constructor
|
||||
path.emplace_back(finish);
|
||||
|
@ -89,85 +89,83 @@ std::deque<Node> Graph::PathBFS(const Node &start, const Node &finish) const
|
|||
InfoDFS Graph::DFS() const
|
||||
{
|
||||
// Track the nodes we have discovered
|
||||
InfoDFS searchInfo;
|
||||
InfoDFS dfs;
|
||||
int time = 0;
|
||||
|
||||
// Visit each node in the graph
|
||||
for (const auto& node : nodes_) {
|
||||
for (const auto & node : nodes_) {
|
||||
std::cout << "Visiting node " << node.number << std::endl;
|
||||
// If the node is undiscovered, visit it
|
||||
if (searchInfo[node.number].discovered == White) {
|
||||
if (dfs.nodeInfo[node.number].discovered == White) {
|
||||
std::cout << "Found undiscovered node: " << node.number << std::endl;
|
||||
// Visiting the undiscovered node will check it's adjacent nodes
|
||||
DFSVisit(time, node, searchInfo);
|
||||
DFSVisit(time, node, dfs);
|
||||
}
|
||||
}
|
||||
|
||||
return searchInfo;
|
||||
return dfs;
|
||||
}
|
||||
|
||||
InfoDFS Graph::DFS(const Node &startNode) const
|
||||
{
|
||||
// Track the nodes we have discovered
|
||||
InfoDFS searchInfo;
|
||||
InfoDFS dfs;
|
||||
int time = 0;
|
||||
|
||||
auto startIter = std::find(nodes_.begin(), nodes_.end(),
|
||||
Node(startNode.number, {})
|
||||
);
|
||||
|
||||
auto startIter =
|
||||
std::find(nodes_.begin(), nodes_.end(), Node(startNode.number, { }));
|
||||
// beginning at startNode, visit each node in the graph until we reach the end
|
||||
while (startIter != nodes_.end()) {
|
||||
std::cout << "Visiting node " << startIter->number << std::endl;
|
||||
// If the startIter is undiscovered, visit it
|
||||
if (searchInfo[startIter->number].discovered == White) {
|
||||
std::cout << "Found undiscovered node: " << startIter->number << std::endl;
|
||||
if (dfs.nodeInfo[startIter->number].discovered == White) {
|
||||
std::cout << "Found undiscovered node: " << startIter->number
|
||||
<< std::endl;
|
||||
// Visiting the undiscovered node will check it's adjacent nodes
|
||||
DFSVisit(time, *startIter, searchInfo);
|
||||
DFSVisit(time, *startIter, dfs);
|
||||
}
|
||||
startIter++;
|
||||
}
|
||||
|
||||
// Once we reach the last node, check the beginning for unchecked nodes
|
||||
startIter = nodes_.begin();
|
||||
|
||||
// Once we reach the initial startNode, we have checked all nodes
|
||||
while (*startIter != startNode) {
|
||||
std::cout << "Visiting node " << startIter->number << std::endl;
|
||||
// If the startIter is undiscovered, visit it
|
||||
if (searchInfo[startIter->number].discovered == White) {
|
||||
if (dfs.nodeInfo[startIter->number].discovered == White) {
|
||||
std::cout << "Found undiscovered node: " << startIter->number << std::endl;
|
||||
// Visiting the undiscovered node will check it's adjacent nodes
|
||||
DFSVisit(time, *startIter, searchInfo);
|
||||
DFSVisit(time, *startIter, dfs);
|
||||
}
|
||||
startIter++;
|
||||
}
|
||||
|
||||
return searchInfo;
|
||||
return dfs;
|
||||
}
|
||||
|
||||
void Graph::DFSVisit(int &time, const Node& startNode, InfoDFS &searchInfo) const
|
||||
void Graph::DFSVisit(int &time, const Node& startNode, InfoDFS &dfs) const
|
||||
{
|
||||
searchInfo[startNode.number].discovered = Gray;
|
||||
dfs.nodeInfo[startNode.number].discovered = Gray;
|
||||
time++;
|
||||
searchInfo[startNode.number].discoveryFinish.first = time;
|
||||
dfs.nodeInfo[startNode.number].discoveryFinish.first = time;
|
||||
|
||||
// Check the adjacent nodes of the startNode
|
||||
for (const auto &adjacent : startNode.adjacent) {
|
||||
auto iter = std::find(nodes_.begin(), nodes_.end(),
|
||||
Node(adjacent.first, {}));
|
||||
for (const auto & adjacent : startNode.adjacent) {
|
||||
const auto node = GetNode(adjacent.first);
|
||||
// If the adjacentNode is undiscovered, visit it
|
||||
// + Offset by 1 to account for 0 index of discovered vector
|
||||
if (searchInfo[iter->number].discovered == White) {
|
||||
std::cout << "Found undiscovered adjacentNode: "
|
||||
<< GetNode(adjacent.first).number << std::endl;
|
||||
if (dfs.nodeInfo[node.number].discovered == White) {
|
||||
std::cout << "Found undiscovered adjacentNode: " << adjacent.first
|
||||
<< " with weight of " << adjacent.second << std::endl;
|
||||
// Visiting the undiscovered node will check it's adjacent nodes
|
||||
DFSVisit(time, *iter, searchInfo);
|
||||
dfs.totalWeight += adjacent.second;
|
||||
DFSVisit(time, node, dfs);
|
||||
}
|
||||
}
|
||||
searchInfo[startNode.number].discovered = Black;
|
||||
dfs.nodeInfo[startNode.number].discovered = Black;
|
||||
time++;
|
||||
searchInfo[startNode.number].discoveryFinish.second = time;
|
||||
dfs.nodeInfo[startNode.number].discoveryFinish.second = time;
|
||||
}
|
||||
|
||||
std::vector<Node> Graph::TopologicalSort(const Node &startNode) const
|
||||
|
@ -177,8 +175,8 @@ std::vector<Node> Graph::TopologicalSort(const Node &startNode) const
|
|||
std::vector<Node> order(nodes_);
|
||||
|
||||
auto comp = [&topological](const Node &a, const Node &b) {
|
||||
return (topological[a.number].discoveryFinish.second <
|
||||
topological[b.number].discoveryFinish.second);
|
||||
return (topological.nodeInfo[a.number].discoveryFinish.second <
|
||||
topological.nodeInfo[b.number].discoveryFinish.second);
|
||||
};
|
||||
|
||||
std::sort(order.begin(), order.end(), comp);
|
||||
|
@ -190,26 +188,26 @@ std::vector<Node> Graph::TopologicalSort(const Node &startNode) const
|
|||
|
||||
InfoMST Graph::KruskalMST() const
|
||||
{
|
||||
InfoMST searchInfo(nodes_);
|
||||
InfoMST mst(nodes_);
|
||||
// The ctor for InfoMST initializes all edges within the graph into a multimap
|
||||
// + Key for multimap is edge weight, so they're already sorted in ascending
|
||||
|
||||
// For each edge in the graph, check if they are part of the same tree
|
||||
// + Since we do not want to create a cycle in the MST forest -
|
||||
// + we don't connect nodes that are part of the same tree
|
||||
for (const auto &edge : searchInfo.edges) {
|
||||
for (const auto &edge : mst.edges) {
|
||||
// Two integers representing the node.number for the connected nodes
|
||||
const int u = edge.second.first;
|
||||
const int v = edge.second.second;
|
||||
// Check if the nodes are of the same tree
|
||||
if (searchInfo.FindSet(u) != searchInfo.FindSet(v)) {
|
||||
if (mst.FindSet(u) != mst.FindSet(v)) {
|
||||
// If they are not, add the edge to our MST
|
||||
searchInfo.edgesMST.emplace(edge);
|
||||
searchInfo.weightMST += edge.first;
|
||||
mst.edgesMST.emplace(edge);
|
||||
mst.totalWeight += edge.first;
|
||||
// Update the forest to reflect this change
|
||||
searchInfo.Union(u, v);
|
||||
mst.Union(u, v);
|
||||
}
|
||||
}
|
||||
|
||||
return searchInfo;
|
||||
return mst;
|
||||
}
|
||||
|
|
|
@ -69,18 +69,29 @@ enum Color {
|
|||
Black
|
||||
};
|
||||
|
||||
// Information used in all searches
|
||||
struct SearchInfo {
|
||||
// Information used in all searches tracked for each node
|
||||
struct NodeInfo {
|
||||
// Coloring of the nodes is used in both DFS and BFS
|
||||
Color discovered = White;
|
||||
};
|
||||
|
||||
// Template for tracking graph information gathered during traversals
|
||||
// + Used for DFS, BFS, and MST
|
||||
template <typename T>
|
||||
struct GraphInfo {
|
||||
// Store search information in unordered_maps so we can pass it around easily
|
||||
// + Allows each node to store relative information on the traversal
|
||||
std::unordered_map<int, T> nodeInfo;
|
||||
// Track total weight for all traversals
|
||||
int totalWeight = 0;
|
||||
};
|
||||
|
||||
|
||||
/******************************************************************************/
|
||||
// BFS search information struct
|
||||
|
||||
// Information that is only used in BFS
|
||||
struct BFS : SearchInfo {
|
||||
// Node search information that is only used in BFS
|
||||
struct BFS : NodeInfo {
|
||||
// Used to represent distance from start node
|
||||
int distance = 0;
|
||||
// Used to represent the parent node that discovered this node
|
||||
|
@ -88,16 +99,14 @@ struct BFS : SearchInfo {
|
|||
const Node *predecessor = nullptr;
|
||||
};
|
||||
|
||||
// Store search information in unordered_maps so we can pass it around easily
|
||||
// + Allows each node to store relative information on the traversal
|
||||
using InfoBFS = std::unordered_map<int, struct BFS>;
|
||||
struct InfoBFS : GraphInfo<BFS> {/* Members inherited from GraphInfo */};
|
||||
|
||||
|
||||
/******************************************************************************/
|
||||
// DFS search information struct
|
||||
|
||||
// Information that is only used in DFS
|
||||
struct DFS : SearchInfo {
|
||||
struct DFS : NodeInfo {
|
||||
// Create a pair to track discovery / finish time
|
||||
// + Discovery time is the iteration the node is first discovered
|
||||
// + Finish time is the iteration the node has been checked completely
|
||||
|
@ -105,18 +114,19 @@ struct DFS : SearchInfo {
|
|||
std::pair<int, int> discoveryFinish;
|
||||
};
|
||||
|
||||
struct InfoDFS : GraphInfo<DFS> {/* Members inherited from GraphInfo */};
|
||||
|
||||
|
||||
/******************************************************************************/
|
||||
// MST search information struct
|
||||
|
||||
struct MST : SearchInfo {
|
||||
struct MST : NodeInfo {
|
||||
int32_t parent = INT32_MIN;
|
||||
int rank = 0;
|
||||
};
|
||||
using InfoDFS = std::unordered_map<int, struct DFS>;
|
||||
|
||||
using Edges = std::multimap<int, std::pair<int, int>>;
|
||||
struct InfoMST {
|
||||
struct InfoMST : GraphInfo<MST>{
|
||||
explicit InfoMST(const std::vector<Node> &nodes)
|
||||
{
|
||||
for (const auto &node : nodes) {
|
||||
|
@ -134,20 +144,17 @@ struct InfoMST {
|
|||
}
|
||||
}
|
||||
|
||||
std::unordered_map<int, struct MST> searchInfo;
|
||||
// All of the edges within our graph
|
||||
// + Since each node stores its own edges, this is initialized in InfoMST ctor
|
||||
Edges edges;
|
||||
|
||||
// A multimap of the edges found for our MST
|
||||
Edges edgesMST;
|
||||
// The total weight of our resulting MST
|
||||
int weightMST = 0;
|
||||
|
||||
void MakeSet(int x)
|
||||
{
|
||||
searchInfo[x].parent = x;
|
||||
searchInfo[x].rank = 0;
|
||||
nodeInfo[x].parent = x;
|
||||
nodeInfo[x].rank = 0;
|
||||
}
|
||||
|
||||
void Union(int x, int y)
|
||||
|
@ -157,23 +164,23 @@ struct InfoMST {
|
|||
|
||||
void Link(int x, int y)
|
||||
{
|
||||
if (searchInfo[x].rank > searchInfo[y].rank) {
|
||||
searchInfo[y].parent = x;
|
||||
if (nodeInfo[x].rank > nodeInfo[y].rank) {
|
||||
nodeInfo[y].parent = x;
|
||||
}
|
||||
else {
|
||||
searchInfo[x].parent = y;
|
||||
if (searchInfo[x].rank == searchInfo[y].rank) {
|
||||
searchInfo[y].rank += 1;
|
||||
nodeInfo[x].parent = y;
|
||||
if (nodeInfo[x].rank == nodeInfo[y].rank) {
|
||||
nodeInfo[y].rank += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int FindSet(int x)
|
||||
{
|
||||
if (x != searchInfo[x].parent) {
|
||||
searchInfo[x].parent = FindSet(searchInfo[x].parent);
|
||||
if (x != nodeInfo[x].parent) {
|
||||
nodeInfo[x].parent = FindSet(nodeInfo[x].parent);
|
||||
}
|
||||
return searchInfo[x].parent;
|
||||
return nodeInfo[x].parent;
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -195,7 +202,7 @@ public:
|
|||
// An alternate DFS that checks each node of the graph beginning at startNode
|
||||
InfoDFS DFS(const Node &startNode) const;
|
||||
// Visit function is used in both versions of DFS
|
||||
void DFSVisit(int &time, const Node& startNode, InfoDFS &searchInfo) const;
|
||||
void DFSVisit(int &time, const Node& startNode, InfoDFS &dfs) const;
|
||||
// Topological sort, using DFS
|
||||
std::vector<Node> TopologicalSort(const Node &startNode) const;
|
||||
// Kruskal's MST
|
||||
|
|
Loading…
Reference in New Issue