diff --git a/cpp/algorithms/graphs/simple/graph.cpp b/cpp/algorithms/graphs/simple/graph.cpp index e532a25..9ed2e30 100644 --- a/cpp/algorithms/graphs/simple/graph.cpp +++ b/cpp/algorithms/graphs/simple/graph.cpp @@ -1,10 +1,10 @@ -/*############################################################################# -## Author: Shaun Reed ## -## Legal: All Content (c) 2021 Shaun Reed, all rights reserved ## -## About: Driver program to test a simple graph implementation ## -## ## -## Contact: shaunrd0@gmail.com | URL: www.shaunreed.com | GitHub: shaunrd0 ## -############################################################################### +/*############################################################################## +## Author: Shaun Reed ## +## Legal: All Content (c) 2021 Shaun Reed, all rights reserved ## +## About: Driver program to test a simple graph implementation ## +## ## +## Contact: shaunrd0@gmail.com | URL: www.shaunreed.com | GitHub: shaunrd0 ## +################################################################################ */ #include "lib-graph.hpp" @@ -13,17 +13,17 @@ int main (const int argc, const char * argv[]) { // We could initialize the graph with some localNodes... - std::map> localNodes{ - {1, {2, 5}}, // Node 1 - {2, {1, 6}}, // Node 2 - {3, {4, 6, 7}}, - {4, {3, 7, 8}}, + std::unordered_map> localNodes{ + {8, {6, 4}}, + {7, {8, 6, 4, 3}}, + {6, {7, 3, 2}}, {5, {1}}, - {6, {2, 3, 7}}, - {7, {3, 4, 6, 8}}, - {8, {4, 6}}, + {4, {8, 7, 3}}, + {3, {7, 6, 4}}, + {2, {6, 1}}, // Node 2... + {1, {5, 2}}, // Node 1 }; - // Graph bfsGraph(localNodes); + Graph exampleGraph(localNodes); std::cout << "\n\n##### Breadth First Search #####\n"; @@ -31,14 +31,14 @@ int main (const int argc, const char * argv[]) // Initialize a example graph for Breadth First Search Graph bfsGraph ( { - {1, {2, 5}}, // Node 1 - {2, {1, 6}}, // Node 2... - {3, {4, 6, 7}}, - {4, {3, 7, 8}}, + {8, {6, 4}}, + {7, {8, 6, 4, 3}}, + {6, {7, 3, 2}}, {5, {1}}, - {6, {2, 3, 7}}, - {7, {3, 4, 6, 8}}, - {8, {4, 6}}, + {4, {8, 7, 3}}, + {3, {7, 6, 4}}, + {2, {6, 1}}, // Node 2... + {1, {5, 2}}, // Node 1 } ); // The graph traversed in this example is seen in MIT Intro to Algorithms @@ -50,12 +50,12 @@ int main (const int argc, const char * argv[]) // Initialize an example graph for Depth First Search Graph dfsGraph ( { - {1, {2, 4}}, - {2, {5}}, - {3, {5, 6}}, - {4, {2}}, - {5, {4}}, {6, {6}}, + {5, {4}}, + {4, {2}}, + {3, {6, 5}}, + {2, {5}}, + {1, {4, 2}}, } ); // The graph traversed in this example is seen in MIT Intro to Algorithms @@ -67,32 +67,62 @@ int main (const int argc, const char * argv[]) // Initialize an example graph for Topological Sort Graph topologicalGraph ( { - {1, {4, 5}}, - {2, {5}}, - {3, {}}, - {4, {5, 7}}, - {5, {}}, - {6, {7, 8}}, - {7, {9}}, - {8, {9}}, {9, {}}, + {8, {9}}, + {7, {9}}, + {6, {7, 8}}, + {5, {}}, + {4, {7, 5}}, + {3, {}}, + {2, {5}}, + {1, {5, 4}}, } ); + auto order = topologicalGraph.TopologicalSort(topologicalGraph.GetNode(6)); + std::cout << "\nTopological order: "; + while (!order.empty()) { + std::cout << order.back() << " "; + order.pop_back(); + } + std::cout << std::endl << std::endl; + // If we want the topological order to match what is seen in the book + // + We have to initialize the graph carefully to get this result - + // Because this is an unordered_(map/set) initialization is reversed + // + So the order of nodes on the container below is 6,7,8,9,3,1,4,5,2 + // + The same concept applies to their adjacent nodes (7,8 initializes to 8,7) + // + In object-graph implementation, I use vectors this does not apply there + Graph topologicalGraph2 ( + { + {2, {5}}, // socks + {5, {}}, // shoes + {4, {7, 5}}, // pants + {1, {5, 4}}, // undershorts + {3, {}}, // watch + {9, {}}, // jacket + {7, {9}}, // belt + {8, {9}}, // tie + {6, {7, 8}}, // shirt + } + ); // The graph traversed in this example is seen in MIT Intro to Algorithms // + Chapter 22, Figure 22.7 on Topological Sort // + Each node was replaced with a value from left-to-right, top-to-bottom // + Undershorts = 1, Socks = 2, Watch = 3, Pants = 4, etc... - std::vector order = topologicalGraph.TopologicalSort(); + std::vector order2 = + topologicalGraph2.TopologicalSort(topologicalGraph2.NodeBegin()); // Because this is a simple graph with no objects to store finishing time // + The result is only one example of valid topological order // + There are other valid orders; Final result differs from one in the book - std::cout << "\n\nTopological order: "; - while (!order.empty()) { - std::cout << order.back() << " "; - order.pop_back(); + std::cout << "\nTopological order: "; + while (!order2.empty()) { + std::cout << order2.back() << " "; + order2.pop_back(); } std::cout << std::endl; + std::cout << std::endl; + + return 0; } diff --git a/cpp/algorithms/graphs/simple/lib-graph.cpp b/cpp/algorithms/graphs/simple/lib-graph.cpp index 723ab6b..67b49e9 100644 --- a/cpp/algorithms/graphs/simple/lib-graph.cpp +++ b/cpp/algorithms/graphs/simple/lib-graph.cpp @@ -8,6 +8,7 @@ ################################################################################ */ +#include #include "lib-graph.hpp" @@ -55,6 +56,7 @@ void Graph::DFS() { // Track the nodes we have discovered std::vector discovered(nodes_.size(), false); + int time = 0; // Visit each node in the graph for (const auto &node : nodes_) { @@ -65,14 +67,55 @@ void Graph::DFS() // Mark the node as visited so we don't visit it twice discovered[node.first - 1] = true; // Visiting the undiscovered node will check it's adjacent nodes - DFSVisit(node.first, discovered); + DFSVisit(time, node.first, discovered); } } } -void Graph::DFSVisit(int startNode, std::vector &discovered) +void Graph::DFS(Node::iterator startIter) { + // Track the nodes we have discovered + std::vector discovered(nodes_.size(), false); + int time = 0; + + auto startNode = GetNode(startIter->first); + + // beginning at startNode, visit each node in the graph until we reach the end + while (startIter != nodes_.end()) { + std::cout << "Visiting node " << startIter->first << std::endl; + // If the startIter is undiscovered, visit it + if (!discovered[startIter->first - 1]) { + std::cout << "Found undiscovered node: " << startIter->first << std::endl; + // Visiting the undiscovered node will check it's adjacent nodes + discovered[startIter->first - 1] = true; + DFSVisit(time, startIter->first, discovered); + } + startIter++; + } + + // Once we reach the last node, check the beginning for unchecked nodes + startIter = nodes_.begin(); + + // Once we reach the initial startNode, we have checked all nodes + while (startIter->first != startNode->first) { + std::cout << "Visiting node " << startIter->first << std::endl; + // If the startIter is undiscovered, visit it + if (!discovered[startIter->first - 1]) { + std::cout << "Found undiscovered node: " << startIter->first << std::endl; + // Visiting the undiscovered node will check it's adjacent nodes + discovered[startIter->first - 1] = true; + DFSVisit(time, startIter->first, discovered); + } + startIter++; + } +} + +void Graph::DFSVisit(int &time, int startNode, std::vector &discovered) +{ + time++; + discoveryTime[startNode - 1] = std::make_pair(startNode, time); + // Check the adjacent nodes of the startNode // + Do not offset startNode by 1, since we use it as a key to a map for (auto &adjacent : nodes_[startNode]) { @@ -83,31 +126,25 @@ void Graph::DFSVisit(int startNode, std::vector &discovered) discovered[adjacent - 1] = true; // Visiting the undiscovered node will check it's adjacent nodes - DFSVisit(adjacent, discovered); + DFSVisit(time, adjacent, discovered); } } + time++; + finishTime[startNode - 1] = std::make_pair(startNode, time); } -std::vector Graph::TopologicalSort() +std::vector Graph::TopologicalSort(Node::iterator startNode) { + DFS(startNode); + std::vector topologicalOrder; - // Track the nodes we have discovered - std::vector discovered(nodes_.size(), false); + std::vector> finishOrder(finishTime); - // Visit each node in the graph - for (const auto &node : nodes_) { - std::cout << "Visiting node " << node.first << std::endl; - // If the node is undiscovered, visit it - // + Offset by 1 to account for 0 index of discovered vector - if (!discovered[node.first - 1]) { - std::cout << "Found undiscovered node: " << node.first << std::endl; + std::sort(finishOrder.begin(), finishOrder.end(), Graph::FinishedSort); - // Visiting the undiscovered node will check it's adjacent nodes - TopologicalVisit(node.first, discovered, topologicalOrder); - } - } + for (const auto &node : finishOrder) topologicalOrder.push_back(node.first); // The topologicalOrder is read right-to-left in the final result // + Output is handled in main as FILO, similar to a stack diff --git a/cpp/algorithms/graphs/simple/lib-graph.hpp b/cpp/algorithms/graphs/simple/lib-graph.hpp index f4abc9e..a0c692f 100644 --- a/cpp/algorithms/graphs/simple/lib-graph.hpp +++ b/cpp/algorithms/graphs/simple/lib-graph.hpp @@ -15,22 +15,48 @@ #include #include #include +#include +#include class Graph { public: - explicit Graph(std::map> nodes) : nodes_(std::move(nodes)) {} - std::map> nodes_; + using Node = std::unordered_map>; + explicit Graph(Node nodes) : nodes_(std::move(nodes)) + { + discoveryTime.resize(nodes_.size()); + finishTime.resize(nodes_.size(), std::make_pair(0,0)); + } void BFS(int startNode); void DFS(); - void DFSVisit(int startNode, std::vector &discovered); + void DFS(Node::iterator startNode); + void DFSVisit(int &time, int startNode, std::vector &discovered); - std::vector TopologicalSort(); + std::vector TopologicalSort(Node::iterator startNode); void TopologicalVisit( int startNode, std::vector &discovered, std::vector &order ); + + // Define a comparator for std::sort + // + This will help to sort nodes by finished time after traversal + static bool FinishedSort(std::pair &node1, decltype(node1) &node2) + { return node1.second < node2.second;} + + inline Node::iterator NodeBegin() { return nodes_.begin();} + // A non-const accessor for direct access to a node with the number value i + inline Node::iterator GetNode(int i) { return nodes_.find(i);} + +private: + // Unordered to avoid container reorganizing elements + // + Since this would alter the order nodes are traversed in + Node nodes_; + + // Where the first element in the following two pairs is the node number + // And the second element is the discovery / finish time + std::vector> discoveryTime; + std::vector> finishTime; }; #endif // LIB_GRAPH_HPP