97 lines
2.9 KiB
C++
97 lines
2.9 KiB
C++
|
/*#############################################################################
|
||
|
## Author: Shaun Reed ##
|
||
|
## Legal: All Content (c) 2021 Shaun Reed, all rights reserved ##
|
||
|
## About: Driver program to test a simple graph implementation ##
|
||
|
## ##
|
||
|
## Contact: shaunrd0@gmail.com | URL: www.shaunreed.com | GitHub: shaunrd0 ##
|
||
|
###############################################################################
|
||
|
*/
|
||
|
|
||
|
#include "lib-graph.hpp"
|
||
|
|
||
|
|
||
|
int main (const int argc, const char * argv[])
|
||
|
{
|
||
|
// We could initialize the graph with some localNodes...
|
||
|
std::map<int, std::set<int>> localNodes{
|
||
|
{1, {2, 5}}, // Node 1
|
||
|
{2, {1, 6}}, // Node 2
|
||
|
{3, {4, 6, 7}},
|
||
|
{4, {3, 7, 8}},
|
||
|
{5, {1}},
|
||
|
{6, {2, 3, 7}},
|
||
|
{7, {3, 4, 6, 8}},
|
||
|
{8, {4, 6}},
|
||
|
};
|
||
|
// Graph bfsGraph(localNodes);
|
||
|
|
||
|
|
||
|
std::cout << "\n\n##### Breadth First Search #####\n";
|
||
|
// Or we could use an initializer list...
|
||
|
// Initialize a example graph for Breadth First Search
|
||
|
Graph bfsGraph (
|
||
|
{
|
||
|
{1, {2, 5}}, // Node 1
|
||
|
{2, {1, 6}}, // Node 2...
|
||
|
{3, {4, 6, 7}},
|
||
|
{4, {3, 7, 8}},
|
||
|
{5, {1}},
|
||
|
{6, {2, 3, 7}},
|
||
|
{7, {3, 4, 6, 8}},
|
||
|
{8, {4, 6}},
|
||
|
}
|
||
|
);
|
||
|
// The graph traversed in this example is seen in MIT Intro to Algorithms
|
||
|
// + Chapter 22, Figure 22.3 on BFS
|
||
|
bfsGraph.BFS(2);
|
||
|
|
||
|
|
||
|
std::cout << "\n\n##### Depth First Search #####\n";
|
||
|
// Initialize an example graph for Depth First Search
|
||
|
Graph dfsGraph (
|
||
|
{
|
||
|
{1, {2, 4}},
|
||
|
{2, {5}},
|
||
|
{3, {5, 6}},
|
||
|
{4, {2}},
|
||
|
{5, {4}},
|
||
|
{6, {6}},
|
||
|
}
|
||
|
);
|
||
|
// The graph traversed in this example is seen in MIT Intro to Algorithms
|
||
|
// + Chapter 22, Figure 22.4 on DFS
|
||
|
dfsGraph.DFS();
|
||
|
|
||
|
|
||
|
std::cout << "\n\n##### Topological Sort #####\n";
|
||
|
// Initialize an example graph for Topological Sort
|
||
|
Graph topologicalGraph (
|
||
|
{
|
||
|
{1, {4, 5}},
|
||
|
{2, {5}},
|
||
|
{3, {}},
|
||
|
{4, {5, 7}},
|
||
|
{5, {}},
|
||
|
{6, {7, 8}},
|
||
|
{7, {9}},
|
||
|
{8, {9}},
|
||
|
{9, {}},
|
||
|
}
|
||
|
);
|
||
|
// The graph traversed in this example is seen in MIT Intro to Algorithms
|
||
|
// + Chapter 22, Figure 22.7 on Topological Sort
|
||
|
// + Each node was replaced with a value from left-to-right, top-to-bottom
|
||
|
// + Undershorts = 1, Socks = 2, Watch = 3, Pants = 4, etc...
|
||
|
std::vector<int> order = topologicalGraph.TopologicalSort();
|
||
|
// Because this is a simple graph with no objects to store finishing time
|
||
|
// + The result is only one example of valid topological order
|
||
|
// + There are other valid orders; Final result differs from one in the book
|
||
|
std::cout << "\n\nTopological order: ";
|
||
|
while (!order.empty()) {
|
||
|
std::cout << order.back() << " ";
|
||
|
order.pop_back();
|
||
|
}
|
||
|
std::cout << std::endl;
|
||
|
|
||
|
}
|